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Abstract: We introduce the theoretical results on the construction of confidence intervals for a nonlinear
regression, based on the linear Taylor expansion of the corresponding nonlinear model output. The case
of neural black-box modeling is then analyzed, and illustrated on an industrial application. We show that
the linear Taylor expansion not only provides a confidence interval at any point of interest, but also gives
a tool to detect overfitting.
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I.  INTRODUCTION

In neural network modeling studies, generally only an
average estimate of a neural model reliability is given
through its mean square error on a test set. Yet, the
problem of the estimation of a given model reliability
has been investigated to a great extent in nonlinear
regression theory (see for example [Bates & Watts 88]
[Seber & Wild 89]). In this framework, section II
presents the construction of confidence intervals (CIs)
for a nonlinear regression based on the least squares
(LS) solution applied to the linear Taylor expansion
(LTE) of the corresponding nonlinear model output; an
illustrative example using a simulated process is given.
In section III, we exploit this method for practical
modeling problems involving neural models. We show
that the LTE not only provides a CI at any point of
interest in the input space, but also gives a tool to detect
overfitting, and thus to perform a good selection among
candidate neural models. An illustration is given
through an industrial application, the modeling of the
elasticity of a complex material from some of its
structural characteristics. Section IV finally discusses
the advantages of the LTE based method with respect to
the computationally intensive bootstrap methods and to
second-order analytic methods.
We deal with static single-output models with a non
random n-input vector x = x1 x2 … xn

T  and a noisy
measured output yp which is considered as the actual
value of a random variable Yp  x  depending on x. We
assume that there exists an unknown regression function
such that for any fixed value of x:

Yp | x = E Yp | x  + W | x (1)
where W | x is a random variable with zero expectation
depending on the input vector x . A family of
parameterized functions f x, qqqq , x ∈ R

n
, qqqq ∈ R

q
 is

called an assumed model. This assumed model is said to
be true  if there exists a value qqqqp of qqqq  such that
∀ x   f x, qqqqp  = E Yp | x . In the following, a data set
consisting of N input-output pairs x k, yp

k
k=1 to N  will

be available, where the x k = x1
k x2

k … xn
k T 

 are non

random n-vectors, and the yp
k  are the corresponding

values of the random variables Yp
k = Yp | x k .

We will usually distinguish between random variables
and their values by using upper- and lowercase letters,
e.g. Yp

k and yp
k; all vectors are column vectors, and are

denoted by boldface letters, e.g. the n-vectors x and
x k ; non random matrices are denoted by light

lowercase letters.

II.  APPROXIMATE CONFIDENCE INTERVALS
FOR NONLINEAR MODELS

In this section, we consider a family of parameterized
functions f x, qqqq , x ∈ R

n
, qqqq ∈ R

q
 which contains

the regression, i.e. the assumed model is known to be
true; (1) can thus be rewritten as:

Yp | x = f x, qqqqp  + W | x (2)
where qqqqp is an unknown q-parameter vector. Let us
consider the random data set x k, Yp

k
k=1 to N , and

denote by  f x, qqqqp  the vector with components:
f x1, qqqqp … f x k, qqqqp … f xN, qqqqp

T
 . We use the

matrix notation:
Yp = f x, qqqqp  + W  (3)

where x denotes the Nxn values xi
k  (k=1 to N,

i=1 to n), and Yp and W  are random N-vectors with
E W  = 0000. Geometrically, this means that E Yp  x
belongs to the solution surface, the manifold
m = f x, qqqq  , qqqq ∈ R

q
 of R

N 
, which is assumed to

be of dimension q.

II.1.  The linear Taylor expansion of the nonlinear
least squares solution
The LS parameter estimator QQQQ?LS is the estimator whose
value qqqq?LS minimizes the empirical quadratic cost-
function:

J qqqq  = yp – f x, qqqq T yp – f x, qqqq (4)
A global minimum of cost-function (4) can be obtained
with efficient second-order algorithms. However, an
analytic expression of a minimum, i.e. of qqqqLS, which
could be used to build CIs is not available (as opposed
to the case of a linear assumed model Yp = x qqqqp + W ,



for which qqqqLS = xT x
-1

 xT yp). Nevertheless, a linear
expansion of QQQQ?LS is obtained by writing the LTE of
 f x, qqqq  around  f x, qqqqp  for a given value x  of the
input:

 f x, qqqq  ≈  f x, qqqqp  +  xxxxT    qqqq  – qqqqp (5)

where xxxx    =  
∂ f x, qqqq

∂qqqq
 
qqqq    =    qqqq

.

In the case of multilayer neural network models, the
global minimum of the cost-function can be obtained for
different values of the parameter vector; but since the
only function-preserving transformations are neuron
exchanges and sign flips (for odd activation functions)
[Sussman 92], we will legitimately consider the
neighborhood of one of these values only. With the
matrix notation, we obtain:

 f x, qqqq  ≈ f x, qqqqp  + x qqqq  – qqqqp (6)

where x = xxxx1 xxxx2 …  xxxxN T 
 and xxxx k = 

∂f x k, qqqq

∂qqqq
 
qqqq = qqqqp 

.

The N, q  matrix ξ is the non random but unknown
(since qqqqp is unknown) jacobian matrix of f. Using (3)
and (6), we obtain the following expansion of QQQQ?LS:

QQQQLS ≈ qqqqp + xT x
-1

 xT W (7)
This means that, since the assumed model is true, the LS
estimator is asymptotically (as N  tends to infinity)
unbiased. Let us denote by p = x xT x

-1
 xT  the

orthogonal projection matrix on the range of ξ. The
latter is tangent to the manifold m  at qqqq  = qqqqp, and is
denoted by l; it is also assumed of dimension q. From
(6) and (7), the LS estimator of E Yp  x  can be
expanded as:

 f x, QQQQLS  ≈ f x, qqqqp  + p W (8)
i.e. it is approximately the sum of E Yp  x  and of p W ,
the projection of W on l, as illustrated in Figure 1.
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Figure 1. Representation of the nonlinear LS solution
and of its LTE.

Let R = Yp – f x, QQQQLS  denote the residual vector, thus:
R ≈ IN – p  W  (9)

where IN  denotes the N, N  identity matrix. Under the
assumption of appropriate regularity conditions on f,
and for large N, the curvature of the solution surface m
is small. Thus, if the assumption of homoscedasticity
can be made i.e. K W  = σ 2 IN , the variance sY

2 x  of
the LS estimator Y = f x, QQQQLS  of the regression for a
fixed input x can be approached with:

s2 xxxxT xT x
-1

 xxxx  (10)

In the following, (10) is termed the LTE variance. Using
(9), we obtain an estimator S2 of σ2:

S2 = R T R
N – q

 (11)

which is asymptotically unbiased. For future
computations, the unknown matrix ξ in (10) may be
approximated by:

z = 
∂f x, qqqq

∂qqqqT
 
qqqq = qqqqLS

(12)

Similarly, no vector xxxx is not available, and its value may
be approximated by:

z = 
∂f x, qqqq

∂qqqq
 
qqqq = qqqqLS

 (13)

Finally, from relations (10) to (13), an estimate of the
variance sY

2 x  is:

sY
2 x  = s2 z T z T z

-1
 z (14)

where s is the value of the random variable S. In the
following, (14) is termed the LTE variance estimate.

II.2.  Approximate confidence intervals for the
regression E Yp  x
If W → N 0000, σ2 IN , i.e. the gaussian assumption holds,
it follows from the above relations and from linear LS
statistical properties that asymptotically [Seber & Wild
89]:

QQQQLS → N  qqqqp, σ2 ξT ξ
-1

(15)
R T R
σ2

  → χN-q
2  (16)

and that QQQQ?LS is statistically independent from R T R.
Our goal is to build a CI for E Yp  x , where x is any
fixed input vector of interest. From (10) and the
preceding results, it can be shown that asymptotically:

T = 
f x, QQQQLS  – E Yp  x

S xxxxT xT x 
-1

 xxxx
 → Student N – q (17)

An approximate CI for E Yp  x  with a level of
significance 1 – a  is thus:

 f x, qqqqLS   ±  tN-q(α)  s z T z T z 
-1

 z (18)
where tN-q(α) is the corresponding Student value. (18)
allows to compute a CI at any input vector x of interest.
From a practical point of view, it only involves once and
for all the computation of the z k

k=1 to N , i.e. the
gradients of the model output with respect to the
parameters at the data inputs x k

k=1 to N , and that of z,
the gradient at the input x of interest. In the case of a
neural model, these gradients are easily obtained with
the backpropagation algorithm.

II.3.  Quality of the approximate confidence intervals
Both the regularity of f and the size of N influence the
curvature of the solution surface, i.e. the degree of
bending and twisting of the manifold m; measures of
curvatures can be found in [Bates & Watts 88] [Seber &
Wild 89] [Antoniadis et al. 92]. As a matter of fact, f is
often regular enough for a first-order expansion to be
satisfactory, provided that N is large.
If N is large enough, the curvature of the solution
surface is small: (i) as in the linear case, the estimator of
the noise variance S2 is unbiased, and the difference



between s 2 and s2 is only due to the random character
of the data set outputs; (ii) the variance sY

2 x  of
 f x, QQQQLS  is globally small, and qqqqLS is likely to be close
to qqqqp: z and z are thus likely to be good approximations
of respectively x and xxxx. A CI based on the LTE variance
estimate (14) is thus reliable.
If N is too small, the curvature is large: (i) as opposed to
the linear case, S2 is biased; (ii) sY

2 x  is globally large,
and qqqqLS is likely to differ from qqqqp: z and z risk to be
poor approximations of x and xxxx. Thus, the approximate
CIs (18) are not reliable.
The above considerations are valid provided that a
global minimum of cost-function (4) is reached. It is
thus necessary to use an efficient second-order
algorithm, to perform several trainings starting from
different initial values of the parameters, and to keep the
estimates corresponding to the lowest value of (4). In
this work, we use the Levenberg algorithm as described
for example in [Bates & Watts 88].

II.4.  Illustrative example
We consider a single-input single-output process
simulated by a neural network with one hidden layer of
two tanh hidden neurons and a linear output neuron:

yp
k = θp1 + θp2 tanh θp3 + θp4 x k

+ θp5 tanh θp6 + θp7 x k  + wk (19)

with qqqqp= 1; 2; 1; 2; -1; -1; 3 T , N=50, and the w k  are
the values of independent gaussian variables with
variance σ2=10-2. The xk  are uniformly distributed in
[-3; 3]. The true assumed model is considered, i.e. a
neural network with the same architecture as that of the
simulated process. The minimization of the cost-
function with the Levenberg algorithm leads to
s 2=1.02 10-2. The true variance of the LS estimator of
the regression is unknown, and the LTE variance (10) is
a good approximation of it only if the curvature is
negligible. In order to evaluate the accuracy of (10) with
respect to the unknown true variance sY

2 x  of
 f x, QQQQLS , i.e. the effect of the curvature, and the
accuracy of the LTE variance estimate (14) from which
the CIs are derived, a reference estimate of this true
variance is computed using a large number M of other
sets, whose inputs are the above xk , and whose outputs
are obtained by simulating different values of the Wk .
The LS estimate  f x, qqqqLS

(i)  of E Yp  x  is computed on
each data set i (i=1 to M), and the reference estimate
σref

2  x  of the true variance for any input x is computed
as:

f x  = 1
M

 f x, qqqqLS
(i)∑

i=1

M

σref
2  x  = 1

M
 f x, qqqqLS

(i)  – f x
2

∑
i=1

M (20)

Figure 2a) displays the reference estimate (20)
computed over M=10000 sets, the LTE variance (10)
computed with qqqqp, and the LTE variance estimate (14)
computed with qqqqLS; the latter is the only estimate
available in real life. Figure 2b) shows the regression,
the data set, the model output and its 99% approximate
CI (18).
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Figure 2. a) LTE variance (thin line), LTE variance
estimate (thin dotted line), and reference variance

estimate (thick line) of  f x, QQQQLS ; b) data set (crosses),
regression (thick line), model output and 99% LTE CI

(thin lines).

The variance of the noise being small, the model output
is close to the regression (i.e. qqqqLS is close to qqqqp); z and
the z’s are thus good approximations of x and of the xxxx’s.
It follows that the LTE variance estimate (14) is close to
the LTE variance (10). Moreover, the size N of the data
set is relatively large with respect to the complexity of
the regression, i.e. the curvature is small: we thus obtain
a good estimation of the true variance through the LTE
variance (10), so that the CIs are accurate.

III.  CONFIDENCE INTERVALS USING NEURAL
NETWORKS

For most real-world black-box modeling problems, a
family of functions which contains the regression is
unknown a priori, as opposed to the situation
considered in the preceding example. Theoretically, the
goal is to select the smallest family of functions which
contains the regression to a certain degree of accuracy.
In practice, several families of increasing complexity
(i.e. neural networks with an increasing number of
hidden units) are considered, and the data set is used
both to estimate theirs parameters, and to perform the
selection between candidate networks.

III.1.  Overfitting detection for model selection
For example, the data set is partitioned in training and
validation set or sets (cross-validation), and the smallest
family of functions leading to the smallest mean square
error on the validation set(s) is selected; a model of the
selected family is then trained on the whole data set. If
the data set size N is small, the disadvantage of cross-
validation is to use a training set which is even smaller:



the best choice is then leave-one-out cross-validation,
but with the drawback of requiring N successful
trainings of the candidate models. Another possibility is
to make use of statistical tests. With this method, one
must choose a large model which is assumed to contain
the regression (i.e. it is a true assumed model), and test
if smaller models are sufficient [Antoniadis et al. 92]
[Urbani et al. 94].
In any case, one must ensure that none of the considered
candidate networks overfits, i.e. that all their neurons or
parameters are useful. To detect overfitting, we propose,
after the training of each neural network, to check the
rank of z. As a matter of fact, if z is not of full rank, i.e.
rank z  < q, m  is locally not of dimension q, which
means that at least one of the parameters is not useful.
This is usually the case when the model is too large with
respect to the regression complexity and to the noise
amplitude, and when overfitting has thus occurred. A
typical situation is the saturation of one hidden neuron,
a situation which generates in the matrix z a column of
+1 or –1 that corresponds to the parameter between the
saturated hidden neuron and the output, and columns of
zeros that correspond to the parameters between the
inputs and the hidden neuron.
In practice, one can for example perform a singular
value decomposition of z, and decide whether all
singular values are significantly different from zero
[Nash 90], or test if the conditioning number (ratio of
the smallest to the largest singular value) is too small.
Nevertheless, it is often difficult to elaborate a tolerance
to make the above decisions. We thus propose to
perform two additional tests on values which are of
interest for the computation of CIs, and are related to the
orthogonal projection matrix p on the range of z:

p = z z T z 
-1

 zT (21)
If z is of full rank, since p is a projection matrix, we
should have:

trace p  = pkk∑
k=1

N

 = rank p  = q (22)

We should also have [Antoniadis et al. 92]:
1
q

 ≤ pkk ≤ 1 (23)

It is of importance for our purpose that both (22) and
(23) be verified since for an input x k belonging to the
training set, the expression of the CI (18) is precisely:

 f x k, qqqqLS   ±  tN-q(α)  s pkk (24)
If (22) or (23) are not satisfied, even if the network has
not been diagnosed to overfit by a test on the singular
values, the computation of the CIs is meaningless.

III.2.  Quality of the confidence intervals
The quality of the selected model  f x, qqqqLS , and thus
of the associated LTE CIs, depend essentially on the
size N of the data set with respect to the complexity of
the unknown regression function and to the noise
variance s2:
1. N is large: it is likely that the selected family

f x, qqqq , qqqq ∈R
q

 contains E Yp  x , i.e. that the LS
estimator is asymptotically unbiased, and that the
model  f x, qqqqLS  is a good approximation of

E Yp  x  in the domain of interest. In this case,
reliable CIs can be computed with (18).

2. N is small: it is likely that either the selected family
f x, qqqq , qqqq ∈ R

q
 is too small to contain E Yp  x

or that the selected model  f x, qqqqLS  overfits; in both
cases, the CIs (18) are meaningless.

A very large validation mean square error (VMSE) as
compared to the training mean square error (TMSE) is
usually the symptom of situation 2.

III.3.  Industrial application
The goal is to model a mechanical property of a
complex material from structural descriptors. We have
been provided with a data set of N=69 examples.
Thanks to repetitions in the data, and assuming
homoscedasticity, the following estimation of the noise
variance could be made: σ2=3.38 10-2, i.e. σ=1.84 10-1.
Using this estimate, statistical tests established the
significance of two inputs. The TMSE of a linear model
with these inputs is 2.28 10-1 (i.e. s 2=2.38 10-1 and
s=4.88 10-1), hence the necessity of nonlinear modeling.

III.3.1.  Selection of the neural model architecture
Neural network candidates with one hidden layer of
sigmoidal hidden neurons of increasing size and a linear
output neuron with direct connections from the inputs
were trained with the Levenberg algorithm; several
initializations of the weights were performed for each
neural network, the final weights corresponding to the
lowest TMSE being kept. For more than 4 neurons,
overfitting was systematically detected through the tests
proposed in III.1. The training data and the output of a
model with 5 hidden neurons (q=23) are shown in
Figure 3; the location of the inputs appears clearly on
Figure 6.
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Figure 3. Examples of the data set (circles) and output
of an overfitting neural model with 5 hidden units.

The network significantly overfits in a delimited input
region containing no examples. The conditioning
number equals 1.2 10-11, a value which is not extremely
small for a double precision computer. Nevertheless,
the overfitting can be detected through the trace of p
which is larger than the expected value 23
(trace p =23.1), and through two diagonal elements
which are larger than 1 (p35 35=1.002 and p69 69=1.02).



Using statistical Fisher tests for the networks with up to
4 hidden neurons, a network with 2 hidden neurons is
selected. Its TMSE equals 1.62 10-2 (s=1.39 10-1). We
also checked the leave-one-out VMSE of this network:
it equals 2.50 10-2, which is of the order of the TMSE. It
is thus likely that we are in situation 1 according to the
classification of section III.2, i.e. the selected model is
large enough to contain the regression. The output of the
selected network is shown on Figure 4.
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Figure 4. Examples of the data set (circles) and output
of the selected neural model with 2 hidden units.

The output of the selected network is roughly the same
as that of the overfitting one, except in the overfitted
region, where its output is smooth.

III.3.2.  Construction of a confidence interval
A CI with a level of significance of 95% is then
computed using (18). The model error and the width of
the 95% CI on the 69 examples of the data set (i.e.
± t58(0.05) 0.139 pkk  for example k) are shown on
Figure 5.
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Figure 5. Model error (thick line) and width of the 95%
CI (thin lines) on the data set.

In order to check the confidence which can be attached
to the model, the variance of its output must be
examined on the whole input domain of interest. Figure
6 shows the isocontours of the LTE estimate of the
standard deviation of the model output on the input
domain defined by the training set. The highest
isocontour of Figure 6 corresponds to the estimate of the
noise standard deviation s=1.39 10-1 obtained with the
selected neural model. In two areas of the input domain
(bottom left and top right), the variance of the model is
higher than that of the noise itself, and no confidence
can be attached to the model output in those areas.
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Figure 6. Isocontours of the LTE estimate of the
standard deviation of the model output.

IV.  DISCUSSION

So far we have established that the LTE approach to the
computation of CIs is interesting because i) the LTE
helps for the selection of a nonlinear model by detecting
overfitting; ii) it is computationally inexpensive; iii) it is
accurate if the curvature is small, as shown on the
illustrative example of section 2. Point (i) is original,
point (ii) and (iii) allow a comparison to other
approaches to the construction of CIs.

IV.1.  Comparison to bootstrap approaches
The LTE approach is computationally advantageous
with respect to multi-training approaches like bootstrap
methods. As a matter of fact, the bootstrap works by
creating many pseudo replicates of the data set, the
bootstrap sets, and reestimating the LS solution
(retraining the neural network) on each bootstrap set;
the variance of the neural model output, and the
associated CI, are then computed over the trained
networks, typically a hundred [Efron & Tibshirani 93].
In the “bootstrap pairs approach” for example, a
bootstrap set is created by sampling with replacement
from the data set. The first advantage of the LTE
approach is to require only one successful training of the
network (i.e. a global minimum is reached) on the data
set to compute the LTE estimate of the variance of its
output, whereas the bootstrap methods require a
hundred successful trainings of the network on the
different bootstrap sets. In fact, the bootstrap is
especially suited to the estimation of the variance of
estimators defined by a formula, like for example an
estimator of a correlation coefficient [Efron &
Tibshirani 93]: for each bootstrap set, an estimate is
computed using the formula, and the estimate of the
variance is easily obtained. But the bootstrap is
definitely not the best method if each estimation



associated to a bootstrap set involves a nonlinear
optimization like the training of a neural network, which
is the case for the construction of CIs for a neural
model.
However, if the data set is large enough, and if the
training time is considered unimportant, the bootstrap
pairs approach is a solution in the case of
heteroscedasticity (i.e. K W  is diagonal but not scalar),
whereas the LTE approach, as well as the “bootstrap
residuals” approach [Efron & Tibshirani 93], are no
longer valid.

IV.2.  Comparison to second-order analytic
approaches
Likelihood theory [Efron & Tibshirani 93], or a
bayesian approach [Bishop 95], lead to an analytic
expression of the variance of f x, QQQQLS  which contains
the Hessian of the cost-function (4). As opposed to
them, the LTE variance (10) brings in an approximation
of the Hessian through ξTξ : one could thus suspect the
LTE approach described in this paper to be less accurate
than the above second-order methods. But this argument
does not hold since, in the same way that ξTξ  must be
replaced with z T z , the components of the Hessian must
be computed around qqqqLS , instead of the unknown qqqqp . In
this context, trying to build second-order CIs is of little
interest. Moreover, for many applications, the curvature
of the solution surface is such that a first-order
expansion is satisfactory.

V.  CONCLUSION

We have given an original presentation and analysis of
the LTE approach to the construction of CIs for a
nonlinear regression using neural network models. We
have stressed the fact that these CIs are meaningful only
if the selection procedure has led to a good model. We
have thus introduced LTE based tests to detect
overfitting, precisely in order to perform a good model
selection.
We have shown that, as opposed to the computationally
intensive bootstrap methods, the LTE approach to the
estimation of CIs is very economical in terms of
computer power, since it only involves a few final
backpropagation runs.
We have also shown that second-order analytic
methods, which necessitate the computation of the
Hessian, are of little interest with respect to the LTE

approach. As a matter of fact, for many applications, the
data set is large enough for a first-order expansion to be
valid; on the other hand, when it is too small, the
approximations needed because the true parameters are
unknown make a second-order expansion meaningless.

Abbreviations
CI confidence interval
LS least squares
LTE linear Taylor expansion
TMSE training mean square error
VMSE validation mean square error
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