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a b s t r a c t

In the adult frog respiratory system, periods of rhythmic movements of the buccal floor are interspersed
by lung ventilation episodes. The ventilatory activity results from the interaction of two hypothesized
oscillators in the brainstem. Here, we model these oscillators with two coupled neural networks, whose
co-activation results in the emergence of new dynamics. One of the networks is built with “loop chains”
of excitatory and inhibitory neurones producing periodic activities. We define two groups of excitatory
neurones whose oscillatory antiphasic sums of activities represent output signals as possible motor com-
mands towards antagonist buccal muscles. The other oscillator is a small network with a self-modulated
oupled oscillators
hythmogenesis
attern generator

excitatory input to an excitatory neurone whose episodic firings synchronise some neurones of the first
network chains. When this oscillator is silent, the output signals exhibit only regular oscillations, and,
when active, the synchronisation process reconfigures the output signals whose new features are repre-
sentative of lung ventilation motor patterns. The biological interest of this formal model is illustrated by
the persistence of the relevant dynamical features when perturbations are introduced in the model, i.e.
dynamic noises and architecture modifications. The implementation of the networks with clock-driven

s pro
continuous time neurone

. Introduction

Adult frogs exhibit prolonged periods of rhythmic ventilation
f the buccal cavity, termed “buccal oscillations”, interspersed by
breathing periods”. Motor nerve patterns indicative of both buccal
scillations and lung ventilation persist in the frog in vitro brainstem
reparation, showing that the capacity for their generation resides
ithin the brainstem itself. Several sets of data support the hypoth-

sis that breathing is driven by two anatomically distinct rhythm
enerators (Wilson et al., 2002, 2006). In addition recent stud-
es suggest that circuits generating the respiratory rhythm in the

ammalian brainstem may have evolved from vertebrate ances-
ors (Wilson et al., 2006). Studying the rhythm generating circuits of
mphibians is likely to shed light on the fundamental properties of
he mammalian respiratory circuit (Vasilakos et al., 2005). A model
f rhythmogenesis in the frog ventilatory system (Bose et al., 2005)
as based on two neurones of Morris–Lecar type, named “Buccal
scillator” (B) and “Lung oscillator” (L), respectively, driven together

y seven equations. In the Bose model, each unit has its own oscil-
ator properties. The coupling of these oscillatory units consists of
n excitatory connection from L to B, and of an inhibitory connec-
ion from B to L, connection which is modulated by the potential of

∗ Corresponding author. Tel.: +33 1 40 79 44 61.
E-mail address: brigitte.quenet@espci.fr (B. Quenet).

303-2647/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2009.04.002
vides simulations with physiological time scales.
© 2009 Elsevier Ireland Ltd. All rights reserved.

the buccal neurone. This modulated coupling produces a bi-stability
between two oscillatory modes figuring buccal oscillations and lung
episodes respectively. We propose a model which keeps two main
features of the Bose model, i.e. (i) the excitatory–inhibitory interre-
lation between B and L oscillators, and (ii) the idea of a modulated
input to L. Our model takes into account the experiments showing
that after sectioning of the brainstem, L oscillator and B oscillator
(Torgerson et al., 2001a) are separated in distinct segments, and
the main features of their respective activities are maintained, i.e.
regular oscillations for B and episodic activity for L. In the neuro-
grams recorded from cranial nerves corresponding to the sectioned
segments containing the B oscillator, the oscillation frequency is the
same as in intact preparations (Wilson et al., 2002). The neurograms
corresponding to L oscillator still exhibit episode occurrence, whose
frequency is significantly lower than the frequency observed in the
intact brainstem. These results strongly suggest that the occurrence
of L episodes does not depend on B oscillator, as in the Bose model,
but depends rather on L oscillator itself. It is the reason why, in
our model, the modulation process driving the episodic activity of L
depends on L activity. To give the model a higher physiological rele-
vance, we considered each oscillator as a neural network. Modelling

rhythm generators with neural populations offers the opportunity
of defining sub-groups of neurones according to their activity phase
relationships, thus configuring possible complex motor sequences.
Our modelling approach also takes into account the conceptual
distinction between the generation of rhythm and the generation

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:brigitte.quenet@espci.fr
dx.doi.org/10.1016/j.biosystems.2009.04.002
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f output patterns, which seems meaningful from a physiological
oint of view (Rybak et al., 2006; Oku et al., 2008). In this paper,
e develop a model of rhythm generation leading to output sig-
als that can represent appropriate ventilatory motor commands.
uch motor commands could be used for a recruitment process of
pecific motoneurone populations involved in oscillations of the
uccal floor, and in the complex muscle sequence of a lung episode
Brett and Shelton, 1979; Sakakibara, 1984; Gdovin et al., 1998). In a
rst step, the model is implemented with discrete time McCulloch
nd Pitts neurones (MCP) (McCulloch and Pitts, 1943), because it
s easier to analyse the relationship between the architecture and
he dynamics in such networks (Horcholle-Bossavit et al., 2007). In
second step, the MCP are replaced by Izhikevich type neurones

Izhikevich, 2003) which give the model a biologically plausible
ime scale.

. Methods

The model network is made of two coupled oscillators: the B oscillator, built
n a structure based on loop chains, and the L oscillator made of a single loop. The
eciprocal connections between L and B are such that L synchronises B neurones, and
is inhibited by B. This model network is implemented either with MCP neurones
r Izhikevich type neurones.

.1. MCP neurones

The MCP neurones are formal units with binary states: 0, equivalent to silence, or
, equivalent to the emission of a spike when a neurone is firing. In the network, the
tate Si(k) of neurone i is updated at time step k, according to Eq. (1). This equation
ndicates that, at each time step k of a simulation the synaptic balance to neurone i
s computed, and if it reaches the threshold �,

Si(k) = 1, otherwise, Si(k) = 0.

Si(k) = H
(∑N

j=1
wij Sj(k − �ij)+ Ei + εr − �

) (1)

where wij is the synaptic weight from neurone j to neurone i, � ij is the trans-
ission delay from neurone j to neurone i: the running index j belongs to [1, . . . ,N]
ith N the number of neurones in the network. Ei is an external input to neurone

. A stochastic factor is introduced at each time step as a standard normal random
erm r multiplied by a dynamical noise parameter ε, which is null in deterministic
imulations H is the Heaviside function, whose value is zero if its argument is neg-
tive and 1 if its argument is positive or zero. In this model, all the synaptic delays
re unit delays: � ij = 1 and the synaptic weights wij are either zero or unitary: (+1)
or excitatory connections or (−1) for inhibitory ones. The inputs Ei are either zero
r excitatory (+1) and � = 0.5. The update rule is a synchronous rule, i.e. at each type
tep k, all the neurones (i = 1, . . ., N) are updated according to Eq. (1).

.2. Network of Izhikevich type neurones

The Izhikevich neurone captures many biological properties of realistic
odgkin–Huxley type conductance-based models but with a greater simplicity in

mplementation (Izhikevich, 2004). In this model the potential of each neurone is
iven by a bi-dimensional system of Ordinary Differential Equations (ODE). Using a
umerically stable ‘leapfrog’ integration method, the ODE equations for neurone i
re defined in Eq. (2):

vi(t) = vi(t − dt)+ dt(0.04 vi(t − dt)2 + 5 vi(t − dt)+ 140− ui(t − dt)+ Ii(t))
ui(t) = ui(t − dt)+ dt(a(b vi(t)− ui(t − dt)))

(2)

here the integration time step dt represents a biological time duration of 1 ms when
t equals 1; vi(t) is the membrane potential in mV of neurone i and ui(t) is an auxiliary
egative feedback variable at time t. Two parameters a and b define the neurone type,
ogether with c and d, introduced for resetting vi(t) and ui(t), respectively when vi(t)
s equal or higher than a reference value set at + 30 mV. In this situation, the state
f neuron i at time t is Si(t) = 1, which represents its spike emission, and Si(t) = 0
therwise. The after-spike resetting is defined by the conditions in Eq. (3):

vi ← c
ui ← ui + d

(3)

ith the following values for the parameters: a = 0.02, b = 0.2, c =−65, and d = 8,
his model exhibits a tonic spiking behaviour in response to a steady input with a
uasi-linear frequency–intensity relationship.
The Izhikevich network is build with the same architecture as in the MCP net-
ork, i.e. with same wij , � ij , and Ei , whatever i and j. Input and synaptic contributions

o Izhikevich neurone i at time t are delivered through the variable Ii(t) in Eq. (2).
i(t) is computed according to Eq. (4):

i(t) = Iin + Isyn(t) (4)
ioSystems 97 (2009) 35–43

The first term is a steady depolarizing current when Ei > 0:

Iin = IDep (5)

where IDep is a value set in order to get a tonic spiking activity for neuron i, with an
interspike time P. The value of P decreases when IDep increases.

The second term containing the synaptic contributions to neuron i is given in
Eq. (6):

Isyn(t) =
N∑

j=1

H(wij) wij Gex
maxSj(t − �ijDelex)+

N∑

k=1

H(−wik)wikGin
maxSk(t − �ikDelin)

+H(Isyn(t − dt))Isyn(t − dt)(1− aex)+H(−Isyn(t − dt)) Isyn(t − dt)(1− ain)

(6)

where Gex
max and Gin

max are the respective maximal values of excitatory and
inhibitory synaptic currents, whose temporal decay is an exponential time func-
tion with respective rates ˛ex and ˛in . Delex and Delin are the respective transmission
delays between a pre-synaptic spike (Sj(t− � ijDelex) = 1 or Sk(t− � ikDelin) = 1) and the
corresponding induced excitatory or inhibitory synaptic current in the post-synaptic
neuron i.

The values of these six synaptic parameters are set in such a way that: (i) a
neurone receiving an excitatory post-synaptic current at t0: Gex

maxexp(−˛ex(t− t0))
emits a spike at t0 + tret , tret being the time of the spiking response to this exci-
tation; (ii) a neurone receiving both an excitatory post-synaptic current at t0:
Gex

maxexp(−˛ex(t− t0)) and an inhibitory post-synaptic current which is at t0:
Gin

maxexp(−˛in(t0 − tin)), with tin < t0 the time of this incoming inhibitory current,
remains silent; (iii) a neurone receiving both a depolarizing steady input cur-
rent: IDep and an inhibitory post-synaptic current at t0: Gin

maxexp(−˛in(t− t0))
is silent between t0 and t0 + P; (iv) an excitatory neuron emitting a spike
induces a spike in a post-synaptic neuron at a time belonging to [P− tret ,
P + tret].

When these conditions are satisfied, we get very similar activity maps in MCP
and Izhikevich type neurones, with one time step in MCP network simulations
corresponding to Pms and to P/dt integration time steps in Izhikevich network
simulations.

2.3. B oscillator: a loop chain

In our model, the rhythmic activities corresponding to the B oscillator originate
from a basic loop connecting three MCP neurones. This basic 3N loop is based on
the connection 3×3 matrix W: [0 0−1; 1 0−1; 0 1 0]; all terms of the delay matrix
T are equal to 1. When an excitatory unit input E1 is applied to the first neurone
of the chain, the 3N loop activity evolves towards a 5-time steps periodic attractor
which is reached whatever the initial state. In order to build models with populations
of oscillating neurones whose periodic activities are regularly phase lagged, the B
network is organized as loop chains. Simulations showing neurone activities of MCP
or Izhikevich networks were implemented in Matlab.

A chain of five 3N loops (Fig. 1Aa) leads to the activities shown in Fig. 1Ab.
Each neurone, but the first one, is active during two successive time steps and silent
during three successive time steps, with a phase lag of one time step between suc-
cessive excitatory neurones in the chain. The first neurone which receives input
E1 = 1, is active during three successive time steps and silent during two succes-
sive time steps: this neurone is the “leader” (Wang and Slotine, 2006) of the
chain. It drives the other neurones whose activities are distributed onto the five
steps of the periodic dynamics: it results in a regular oscillation of the number
of active excitatory neurones (Fig. 1Ac). When the same network is simulated
with Izhikevich type neurones (Fig. 1B), the individual membrane potential vi(t)
of neuron i exhibit action potentials and sub-threshold excitatory and inhibitory
effects, according to the evolution of Ii(t) (Fig. 1Ba, neuron 2: thick line for v2(t)
and thin line for I2(t)). The neurone firings, corresponding to the states Si(t) = 1,
exhibit the spatio-temporal patterns of Si(k) = 1 in the MCP network, as shown
in Fig. 1Ab and 1Bb. In the Izhikevich network, the output signal illustrated in
Fig. 1Bc is computed by filtering the sum of the individual spikes (membrane
potentials higher than −55 mV) of the excitatory neurones with a recursive filter
based on a moving square window of width P/dt. This filter is applied in forward
and backward directions, performing a zero-phase digital filtering (Gustafsson,
1996). As one time step in MCP network simulations corresponds to P/dt inte-
gration time steps in Izhikevich network simulations, with P about 100 ms and
dt = 0.125 ms, the sequence illustrated in Fig. 1 corresponds to 40-time steps in
the MCP network and to 32000 time steps in the Izhikevich network, i.e. 4 s. In
these conditions, the frequency of the output signal, determined by P, is 2 Hz. This
biologically plausible time scale is used for labelling the time axis in the MCP sim-
ulations.
2.4. L oscillator: a small modulated network

The part of the model corresponding to the L oscillator is based on two MCP
neurones: an excitatory neurone l1, and an inhibitory neurone l2, connected by
unitary connections. l2 inhibits l1 and itself (Fig. 2A inset). L exhibits a single
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Fig. 1. 3N loop chain used in B oscillator. (Aa) Oriented graph of a chain of five 3N loops: neurones are either excitatory (black diamonds) or inhibitory (grey filled circle) with
their respective excitatory (black arrows) and inhibitory (grey arrows) connections. The leader receives a unitary excitatory input E represented by a white hexagon. (Ab)
Simulation showing the activities in the 3N loop chain with MCP neurones for 40-time steps: neural state 1 is indicated by black diamonds for excitatory neurones and grey
dots for inhibitory ones. Vertical axis: neurone number. (Bb) Simulation showing the activities in the 3N loop chain with Izhikevich type neurones for 4 s: spikes are indicated
by black diamonds for excitatory neurones and grey dots for inhibitory ones. Vertical axis: neurone number. (Ba) Evolution of neurone 2 membrane potential v2(t) (thick line)
showing its spiking activity and its corresponding current I2(t) (thin line) for the two first seconds of the simulation. (Ac) Evolution of the “output signal” which is the number
o l” whi
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f active excitatory neurons in the MCP model. (Bc) Evolution of the “output signa
he Izhikevich excitatory neurones. Parameter values for Izhikevich model: IDep = 4
t = 0.125 ms.

ttractor with a period equals to 2, when both l1 and l2 receive a unitary external
xcitatory input. When l2 receives an external input E2 = 1 and l1 receives a modu-

ated excitation, other attractors may appear depending on the synaptic balance on
1.

In order to modulate l1 activity, we define a modulated excitatory input received
y l1, Eml1(t), which depends on l1 activity. An example of temporal evolution of
ml1(t) is illustrated in Fig. 2. Active periods of l1 are characterized at each time

ig. 2. Modulated L oscillator. (A) Temporal evolution of the modulated exci-
ation Eml1. Inset: oriented graph of L network, where “Mod” represents the
uto-modulation function. (B) Temporal evolution of Ac, measuring the activity of

1, reset when Ac reaches MaxAc. Black diamonds indicate state 1 for l1 (l1 firings).
arameter values: ˇ = 1.05, MaxAc = 6, � = 0, ε = 0.06, ı = 0, Em0 = 0.1.
ch is the filtered sum of the spikes (membrane potentials higher than −55 mV) of
max = 50; Gin

max = 30; ˛ex = 1 ms−1; ˛in = 0.026 ms−1; Delex = 96.7 ms; Delin = 95.1 ms;

step of the simulation by a variable Ac(t) which represents the counter of l1 “spikes”
number, i.e. Sl1 = 1, whose maximal value is fixed at MaxAc. Ac(t) is updated according
to Eq. (7), where H is the Heaviside function.

Ac(t) = [1−H(Ac(t − 1)−MaxAc)](Sl1(t − 1)+ Ac(t − 1)) (7)

The counter Ac is active with the first occurrence of Sl1 = 1 and is reset to 0 when
MaxAc is reached by Ac. At time t, Eml1(t) > 0 is the sum of three terms: (i) the exci-
tation increase (ˇEml1(t−1)) when l1 is silent, with the kinetic parameter ˇ > 1, (ii)
a reset value Em0 > 0 when Ac reaches the predefined constant MaxAc, (iii) a mod-
ulation noise parameter � , multiplying x, a uniform random real variable between
(−0.5) and (0.5). Eml1(t) is updated according to Eq. (8):

Eml1(t) = [1−H(Ac(t − 1)−MaxAc)] (ˇEml1(t − 1))

+ [H(Ac(t − 1)−MaxAc)] Em0 + � x (8)

The excitatory input Eml1(t) increases until Ac(t−1) equals MaxAc, when the reset
occurs (Fig. 2A). The minimal positive value for Eml1(t) is set at Em0 = 0.1 in all sim-
ulations. A “lung episode”, related to l1 activity, begins when Ac equals 1 and ends
when Ac equals MaxAc≥1. The value of MaxAc can be modified after each Ac reset
by an additional stochastic term, which is a uniform random real variable between
(−0.5) and (0.5) multiplied by the duration noise parameter ı. The simulation shown
in Fig. 2 illustrates two examples of l1 episodes, with dynamical noise only (ε = 0.06,
� = 0, ı = 0).
2.5. Ventilatory model LB: connecting L and B networks

The model LB comprises the L network and the B network built as one chain
of five loops. In the model, all synaptic weights (connection matrix and inputs) are
unitary when non-zero, except the modulated excitatory input Eml1 to l1. Neurone
labelled l3, neither active nor connected to the network is introduced for graphical
clarity in the raster plots. Fig. 3Ac shows the graph of the model with the correspond-
ing connectivity matrix WLB1 (Fig. 3Aa) and input vector ELB1 (Fig. 3Ab). Neurone
l1 receives connections from all the inhibitory neurones of B and sends excitatory
connections to each neurone of B (Fig. 3Ac).
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Fig. 3. LB network model: connecting L and B. (Aa) Connectivity matrix of the LB model connecting the oscillators L and B with excitatory (black squares), inhibitory (grey
squares) and null connections (white). B excitatory neurones are numbered: 4 (leader), 5, 7, 9, 11, 13. B inhibitory neurones are numbered: 6, 8, 10, 12, 14. (Ab) Input vector
with two excitatory inputs from E: to l2 and to b4 (4th neurone of LB network). (Ac) Corresponding oriented graph. Excitatory (black diamonds) or inhibitory (grey filled
c onnec
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ircles) neurones with their excitatory (black arrows) and inhibitory (grey arrows) c
iamonds for excitatory neurones and grey dots for inhibitory ones. Note that when
buccal oscillation” and a “lung episode”. (D) Temporal evolution of the modulated

. Results

.1. Dynamics of model LB: buccal oscillation and episodic lung
ynchronisation

Two main features of the network dynamics are illustrated in
ig. 3B and C. When l1 is silent, the dynamics exhibit phase lagged
ctivities of the B neurones (Fig. 3B) corresponding to small regular
scillations of the output signal OS, the number of active excita-
ory neurones (Fig. 3C), i.e. B excitatory neurones and l1. When
1 is active, the neurones are synchronised and OS exhibits large
mplitude oscillations. A transition period (Tp) appears after the
ynchronisation process due to l1 activity, then the periodic dynam-
cs resume (Fig. 3B). This transition period corresponds to the time
ecessary for the excitation to propagate along the chain. Fig. 3D
hows the temporal evolution of Eml1. The initiation of a lung
pisode needs a value of Eml1 which compensates the inhibition l1
eceives from l2 and from the B inhibitory neurones. Longer simula-
ions without any noise show a regular occurrence of lung episodes,
hose frequency of occurrence and duration depend on the param-

ters ˇ and MaxAc of the modulated excitation (Fig. 4A). When the
alue of ˇ parameter is reduced, the time interval between two lung
pisodes is lengthened (Fig. 4Ab). When the value of MaxAc parame-
er is reduced, the lung episode duration is reduced (Fig. 4Ac). Since
he biological neural dynamics are non-deterministic, stochastic
ehaviour is introduced in the model through three noise factors:
he dynamical noise ε, the modulation noise � and the duration
oise ı. Simulations with the same sets of parameters but addi-
ional noises (ε = 0.15, � = 0.15, ı = 6) exhibit lung episodes with

ariable duration and occurrence frequency (Fig. 4B), like in phys-
ological recordings (McLean et al., 1995; Torgerson et al., 2001a;
roch et al., 2002). These lung episodes may contain several syn-
hronizing events, which appear as successive peaks in OS, and in
ome instances (Fig. 4Ba and Bc) lung activity appears as a single
tions. (B) Simulations of network activity: neural state 1 (firings) indicated by black
ctive the B neurones are synchronised. (C) Output signal OS of the network showing
tion Eml1. Parameter values: ˇ = 1.05, MaxAc = 6, � = 0, ε = 0, ı = 6, Em0 = 0.1.

peak (Reid and Milsom, 1998). Noise affects the network dynam-
ics and some disturbances appear in both buccal oscillations and
lung episodes. Importantly, the introduction of noise allows the
model to retain its two main properties: buccal rhythm and the
occurrence of lung bursts. A quantitative analysis of the relation-
ships between the duration of the lung episodes and MaxAc on
one hand, and their occurrence frequency and ˇ on the other hand,
are illustrated in Fig. 5A and 5B, respectively. With the time scale
defined in Section 2 (Fig. 1), when MaxAc varies from 2 to 10, the
duration increases linearly from 0.9 s to 2.35 s; when ˇ varies from
1.01 to 1.1, the frequency increases linearly from 1.6 to 19 min−1.
These values compare with the experimental values (McLean et
al., 1995; Torgerson et al., 2001a; Broch et al., 2002; Oku et al.,
2008).

3.2. Two antiphasic sub-populations

In our model based on populations of neurones, it is possible
to increase the population size either by increasing the number of
loops in a chain or by increasing the number of chains. When adding
loops in the chains, there is an increase in the transition period
Tp; by contrast, when the number of chains is increased, without
adding any new loop to the chains, Tp is constant. Here, the B neu-
ral population is increased by adding one loop in the chain and
adding a second 6-loop chain, in order to define two subgroups
of excitatory neurones of same size. The connection matrix and
input vector of the corresponding LB model are shown in Fig. 6Aa
and Ab. This matrix duplicates the connection matrix of Fig. 3Aa
with an additional loop for the B population, and is complemented

with appropriate inhibitory reciprocal connections between the
two chains, in such a way that their activities are phase-locked.
In the population of B neurones, two subgroups, Bc and Bd, in ref-
erence to “buccal constriction” and “buccal dilation” which involve
antiphasic muscle activities (Kogo et al., 1994; Vasilakos et al., 2005)
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ig. 4. Parameters determining duration and frequency of “lung episodes”. (Aa–c
emporal evolution of Eml1 With the respective parameter values: A: without noise
axAc = 8, c: ˇ = 1.05, MaxAc = 4.

re selected, as shown in Fig. 6Ac. Taking into account the concep-
ual distinction between the rhythm generator (RG) and the pattern
enerator (PG), we define the RG as the network made by L and two
eaders of the chains (Fig. 6Ac). The pattern generator PG contains
ll the other neurones. The excitatory neurones defining the two
roups Bc and Bd are selected in order to get two out-of-phase,
lmost antiphasic, output signals OSBc and OSBd (Fig. 6B and C)
hen l1 is silent. All the B excitatory neurones receive an excita-

ion from l1 and are synchronised by this neurone during a lung

pisode, while in the inhibitory population of B, only inhibitory Bc
eurones receive a connection from l1 this produces small phase

ags between OSBc and OSBd during lung episodes (Fig. 6B and C), l1
ctivity being included in the OSBc. The phase relationships between

ig. 5. L episode frequency and duration depend linearly on ˇ and MaxAc. (A) With
fixed value of ˇ = 1.05 and MaxAc varying from 2 to 10, the L episode frequency is

table around 9.6 min−1 and the duration increases linearly from 0.9 s to 2.35 s. (B)
ith a fixed value of MaxAc = 8 and ˇ varying from 1.01 to 1.1, the L episode duration

s stable around 2.15 s and the frequency increases linearly from 1.6 to 19 min−1.
arameter values: � = 0, ε = 0, ı = 0, Em0 = 0.1.
a–c) Upper graph: temporal evolution of OS showing lung episodes; lower graph:
ε = 0, ı = 0 and B: with noise � = 0.2, ε = 0.15, ı = 6. a: ˇ = 1.05, MaxAc = 8, b: ˇ = 1.02,

OSBc and OSBd are maintained when the three types of noise are
present.

3.3. Architecture modifications

In the LB model, the temporal evolution of OSBc and OSBd results
from the strictly organized network architecture based on loop
chains. Does this architecture tolerate some flexibility while keep-
ing the two crucial features: buccal regular antiphasic oscillations
and episodic lung firings? In order to test the effects of some flexi-
bility, we introduce perturbations in the network and evaluate their
impact on the network dynamics and the output signals. The mod-
ifications are introduced by random suppression of some existing
connections and random addition of new excitatory or inhibitory
connections, whose weight w is fixed with this condition: 0 < |w|< 1.
The connection matrix shown in Fig. 7Ab illustrates an example of
such modifications affecting the basic connection matrix shown in
Fig. 7Aa (same matrix as in Fig. 6Aa and Ab): from the 76 origi-
nal connections, 9 are suppressed and 41 new connections with
|w|= 0.15 are added, thus, the matrix is affected by 50 modifications.
Fig. 7B and C illustrate the effects of these architectural modifica-
tions: both regular buccal oscillatory behaviour with antiphasic Bc
and Bd activities and the occurrence of lung episodes are retained.
The critical point for the presence of these features is the continuity
of excitation linking the loops in at least one of the chains.

3.4. Separation of L and B in model LB

Simulations of L and B dynamics have been performed after sup-
pression of the connections between L and B (Fig. 8A), mimicking
the experimental separation of L and B oscillators in the frog brain-
stem (Torgerson et al., 2001a; Wilson et al., 2002). Since in our

model the modulation of the l1 excitation depends on l1 activity
only, lung episodes do occur at the level of the isolated L (Fig. 8B
and OSl1 in C), with a frequency and duration that mainly depend
on new values of ˇ and MaxAc parameters. In this situation, where
l1 activity is excluded from OSBc, the frequency of the antiphasic
buccal oscillations of OSBc, and OSBd does not change (Fig. 8C).
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Fig. 6. Antiphasic OSBc and OSBd in LB model. (Aa) Connectivity matrix of LB model build with two chains of 6 loops linked by reciprocal inhibitory connections: excitatory
(black squares), inhibitory (grey squares) and null connections (white). Bc excitatory neurones are numbered: 5, 11, 13, 18, 24, and 26. Bc inhibitory neurones are numbered:
6, 12, 14, 19, 25, and 27. Bd excitatory neurones are numbered: 7, 9, 15, 20, 22, and 28. Bd inhibitory neurones are numbered: 8, 10, 16, 21, 23, and 29. (Ab) Input vector with
three excitatory inputs: to l2 and to the two leaders b4 (4th neurone of LB network) and b17 (17th neurone of LB network). (Ac) Oriented graph of LB model: RG: rhythm
generator, containing l2, the leaders b4 and b17, receiving a constant external input and l1, with its modulated excitation (not shown). PG: pattern generator, containing two
sub-groups of neurones identified as Bc and Bd. Bc group: excitatory neurones (black diamonds) and inhibitory neurones (black empty circles) Bd group: excitatory neurones
(grey diamonds) and inhibitory neurones (grey empty circles). l1 excitatory connections project to Bc and Bd neurones but the Bd inhibitory neurones. (B) LB excitatory
neurone activities: black diamonds for excitatory neurones Bc and l1, and grey diamonds for excitatory neurones Bd. (C) Corresponding OSBc (black line), the number of active
excitatory Bc neurones (+l1) and OSBd (grey line), the number of active excitatory Bd neurones. (D) Temporal evolution of the modulated excitation Eml1. Parameter values:
ˇ = 1.05, MaxAc = 8, � = 0.2, ε = 0.15, ı = 6, Em0 = 0.1.

Fig. 7. Effects of modifications of the network architecture. (Aa) Connectivity matrix of LB model build with two chains of 6 loops linked by reciprocal inhibitory connections:
excitatory (black squares), inhibitory (grey squares) and null connections (white). (Ab) Same basic matrix with 50 modified connections: random suppression of some existing
connections and random addition of new excitatory or inhibitory connections whose weight is set at a value of 0.15. (B) Excitatory neurone activities of the LB model: black
diamonds for neurones Bc and l1, and grey diamonds for neurones Bd. (C) Number of active excitatory neurones Bc (+l1) and Bd, i.e. OSBc (black line) and OSBd (grey line),
respectively. Parameter values: ˇ = 1.05, MaxAc = 8, � = 0.2, ε = 0.15, ı = 6, Em0 = 0.1.
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Fig. 8. L and B separation. (Aa) Connectivity matrix of the network when L and B
oscillators are disconnected: excitatory connections (black squares) and inhibitory
connections (grey squares), null connections (white). (Ab) Graph of the disconnected
oscillators: B network with groups of Bc and Bd neurones shown as connected nuclei
(black diamonds for Bc excitatory neurones, grey diamonds for Bd excitatory neu-
rones, and empty circles for inhibitory neurones), without any connection with L
oscillator (l1: black rectangle and l2: empty circle with auto-connection; modula-
tion not shown). (B) l1 firings (black diamonds) resulting from the auto-modulated
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xcitation Eml1 (black line). “lung episodes” occurs corresponding to l1 episodic fir-
ngs. (C) B regular oscillations with antiphasic OSBc (black line) and OSBd (grey line).
arameter values: ˇ = 1.018, MaxAc = 2, � = 0.05, ε = 0.05, ı = 2, Em0 = 0.1.

.5. Dynamics of LB with Izhikevich neurones

The model LB is implemented with Izhikevich neurones using

he architecture defined by the matrix of Fig. 7Ab. Fig. 9 illustrates
he dynamics of this model. The activity of excitatory neurones is
hown as raster plots of their action potentials in Fig. 9A. An action
otential corresponding to state 1 for MCP neurones, the raster

ig. 9. LB model implemented with Izhikevich neurones. (A) Excitatory neurone
ctivities of the LB model (same architecture as in (Ab)): spikes are indicated by black
iamonds for excitatory neurones from the Bc group and l1, and grey diamonds for
xcitatory neurones from the Bd group (compare with (B)). (B) Neurone l1 and two
ther neurones, one in Bc group (Bc7) and one in Bd group (Bd26): evolution of mem-
rane potential vi(t) (thick line) showing their spiking activity and their respective
urrent Ii(t) (thin line). (C) Sums of the spikes (membrane potentials higher than
55 mV) of the excitatory neurones: sum Bc (black line) and sum Bd (grey line) for
eurones Bc (+l1) and neurones Bd, respectively. (D) FSBc (black line) and FSBd (grey

ine) are the filtered sums of spikes; compare with OSBc and OSBd in (C). Parame-
er values: ˇ = 1.00013, MaxAc = 8, � = 0.002, ε = 0, ı = 0, Em0 = 0.1. Other parameters:
ame as in Fig. 1.
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plot of Izhikevich neurones exhibits a spatio-temporal activity map
very similar to the MCP neurones map (compare with Fig. 7B).
Fig. 9B illustrates, for l1 and two excitatory B neurones, the time
evolution of their membrane potentials vi(t) (thick line), showing
their spikes, and the corresponding current Ii(t)) (thin line). The
sums of the individual spikes (membrane potentials higher than
−55 mV) of the Bc and Bd excitatory neurones, Sum Bc (includ-
ing l1) and Sum Bd, show the phase lagged dynamics of the two
groups (Fig. 9C). In order to compute output signals similar to the
signals OSBc and OSBd of Fig. 7C, these sums are filtered as in Fig. 1Bc.
This processing provides the two respective output signals FSBc and
FSBd, which are comparable to OSBc and OSBd, with both antipha-
sic buccal oscillations and lung episodes, with an adapted value
of ˇ in order to take into account the number of integration time
steps.

4. Discussion

4.1. Advantages of neural populations for modelling pattern
generation

Our network model implemented either with MCP or Izhikevich
neurones is built-in order to account for the basic physiological
behaviours observed in the frog ventilatory system: (i) a neural
oscillation at the origin of the rhythmic buccal floor movements
with antiphasic activities of motoneurones projecting to antagonist
muscles; (ii) some episodic neural activities which produce lung
inflation or deflation (Vitalis and Shelton, 1990) through stronger
buccal muscle contractions with narial and glottis contributions.
To our knowledge, there are nor available data about the synap-
tic organisation of the frog respiratory network, neither precise
information about the intrinsic properties of its pre-motor neu-
rones: therefore, we have chosen to build the simplest network
able to achieve both functions owing to the following features: a
loop chain architecture responsible for buccal rhythmic distributed
activities and a modulated excitation which episodically recruits
lung excitatory neurone and synchronises B neurones. With the
model neural population, it is possible to define a rhythm gener-
ator and a pattern generator, this matches the two conceptually
levels considered in the frog brainstem (Rybak et al., 2006; Oku
et al., 2008): in our model, the B neurones which contribute to
the output signals belong to the pattern generator. The output sig-
nals of the models are defined as the number of selected active
excitatory neurones in order to get the appropriate patterns for
functional motor sequences: two sub-populations can be defined
in B network, in such a way that their respective numbers of active
neurones produce two almost antiphasic output signals. There are
other advantages of dealing with neural units when building venti-
lation models. It is possible: (i) to consider a variety of network
architectures, for instance, here B is made of one or two chains
with various numbers of loops, (ii) to insert modifications in the
strict regularity of the initial network topologies, which intro-
duce biological likelihood. In the B neural population, excitatory
neurones that are chained propagate an “oscillating wave” result-
ing in global regular rhythmic activity. Interestingly, a biological
counterpart of such a network topology is suggested by a recent
study of mice brainstem slices containing functional respiratory
networks (Hartelt et al., 2008). Through optical recordings, map-
ping the neurones and their connections was used to generate
wiring diagrams of the network, which is organized as chains of
small clusters of a few neurones. In the MCP network the noise

factor ε introduces fluctuations in the synaptic balance figuring
communication defects between the neurones. In the Izhikevich
network, a built-in property of the model introduces fluctuations
in the membrane potentials and results in jitter affecting the spike
timing.



4 net / B

4

o
a
p
t
o
t
l
e
i
t
t
f
a

4

n
v
a
w
t
i
c
(
c
e
t
h
w
H
w
f
t
p
c
f
c
m
C
b

o
a
b
c
S

4

b
p
o
p
f
T
M
v
i
i
F
b

2 G. Horcholle-Bossavit, B. Que

.2. Advantages of the modulated excitation on l1

The deterministic modulated excitation Eml1 produces regular
ccurrence of lung episodes. It is possible to set the parameters
nd MaxAc in order to fully control occurrence frequency and
attern representing “breathing periods”. A variety of possible pat-
erns, including monophasic, biphasic or polyphasic peaks, can be
btained according to selected sets of ˇ and MaxAc. Stochastic fac-
ors � and ı introduces variability in the modulated excitation on
1 and, therefore, in occurrence frequency and patterns of lung
pisodes. The effects of these factors on the modulated excitation
ndicate that a precise temporal evolution of Eml1 is not critical for
he bi-stability of the network dynamics. As the modulated exci-
ation is built independently from B activity, when L is separated
rom B, we get intermittent breathing episodes corresponding to l1
ctivity.

.3. Comparison with biological breathing patterns

The output signal patterns produced by the model are remi-
iscent of the various patterns observed in neurograms from in
itro preparations (Kogo et al., 1994; Reid and Milsom, 1998). In
ddition, the fact that such neurograms exhibit activity patterns
hich match the motor sequences observed in intact prepara-

ions (Vasilakos et al., 2005, 2006) suggests that the main driving
nput for the ventilatory system is provided by central chemore-
eptors whose activity depends on normocapnia or hypercapnia
Torgerson et al., 2001b; Taylor et al., 2003). Our modulation rule
ould correspond to recruitment and de-recruitment processes of
xcitatory central chemoreceptors. Increasing ˇ could correspond
o a faster recruitment of such chemoreceptors, for instance with
ypercapnia. Blocking the effects of such an excitatory recruitment
ould result in the suppression of lung burst activity (Chen and
edrick, 2008). When brainstem segments containing L and B net-
orks, respectively, are anatomically separated, L burst occurrence

requency is significantly lower than the frequency observed in
he intact brainstem: our model may account for this observation
rovided a smaller value of ˇ, corresponding to a smaller chemore-
eptor population contained in the isolated L segment. The noise
actor � could represent fluctuations in the population of active
entral chemoreceptors. The noise factor ı could correspond to
odifications of l1 intrinsic properties by a neuromodulator (see

hen and Hedrick, 2008 for substance P effects) able to lengthen l1
ursts.

The output signals OSBc and OSBd are antiphasic during buccal
scillations and slightly phased lagged during lung episodes. Higher
mplitudes of OSBc and OSBd during lung episodes may account for
oth stronger buccal muscle contraction and recruitment of mus-
les responsible for glottis and narial movements (Kogo et al., 1994;
akakibara, 1984).

.4. Biological time scale

In order to compare the frequency and duration of buccal and
reathing periods in the output signals with the corresponding
hysiological recordings, we calibrate the simulation time in terms
f biological time. The Izhikevich neurone introduces a biologically
lausible time scale in simulations, since the parameters in the dif-

erence equations (Eq. (2)) are calibrated for a time step dt in ms.
he period of the B oscillation lasts for five update time steps in an
CP network which corresponds to 5P, i.e. to 500 ms, in the Izhike-
ich model. With this time scale, B frequency is 2 Hz. This frequency
s of the order of magnitude of the frequency observed in record-
ngs from adult frogs (see Table 1 in Vitalis and Shelton, 1990, and
ig. 5A in Vasilakos et al., 2005). Moreover, since in our model the
uccal frequency is based on P, which depends on IDep value and
ioSystems 97 (2009) 35–43

on the intrinsic properties of the Izhikevich neurone, the minimal
value for this frequency is about 1 Hz for the selected neuron (a, b,
c and d given in methods). This Izhikevich model is a simple reg-
ular spiking neurone, but another model could be implemented
in order to adapt the network dynamics to precise physiological
data. The modulation parameter ˇ and the reset parameter MaxAc
can be adjusted at values which produce occurrence and duration
of breathing periods corresponding to various physiological situa-
tions, stage and species (see Fig. 5). In simulations with Izhikevich
neurones, there is an access to the temporal evolution of membrane
potentials, revealing spikes and synaptic currents of each neurone
that are comparable to physiological recordings. A recent study
(Oku et al., 2008) shows that some respiratory neurones extracellu-
larly recorded in the frog respiratory centres fire during both buccal
and lung activities, while other ones fire only during lung episodes,
these observations are similar to the simulated activities of Bc7 or
Bd26 and l1 shown in Fig. 9. An additional advantage of dealing with
Izhikevich neurones is the possible choice of their intrinsic prop-
erties. For instance, a bursting type neurone implemented in the
model rather than the tonic spiking presented here could improve
the robustness of the rhythm generation as suggested in a recent
study (Purvis et al., 2007). The next step of this theoretical approach
of the respiratory rhythm generation consists of using the Bc and
Bd output signals produced by the present network as inputs to
another network built with various threshold Izhikevich ‘motoneu-
rones’ activated through a recruitment process, in order to model
the motor patterns. The validation of a specific model, with appro-
priate parameters, will rely upon quantitative comparison between
simulated motor signals and physiological neurograms in a partic-
ular biological preparation.
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