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- INTRODUCTION :

The very large research effort - both theoretical and experimental - which has been
devoted to the understanding of spin glasses during the past years has had two largely
unexpected consequences in the field of engineering : first, the emergence of the
technique of simulated annealing, which has already had a strong impact on
combinatorial optimization and its applications, and, secondly, a new wave of interest
in neural networks, which turn out to be promising new tools for performing high-level
functions in information processing.

Several papers of the present book deal with basic aspects of the application of
statistical physics concepts to complex optimization problems ; similarly, new
developments in the theory of neural networks are presented, both in connection with
biological modelling and with more general aspects of information storage and
retrieval. The purpose of this paper is to present some applications of these two fields.
The first part of the paper will be devoted to an application of simulated annealing to
the Computer-Aided Design of electronic circuits ; other applications of this technique
will also be mentioned ; in the second part, we shall present two new learning rules for
networks of formal neurons, which are directly aimed at applications such as the

automatic recognition of handwritten characters.
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I - ENGINEERING APPLICATIONS OF SIMULATED ANNEALING :

1) Simulated annealing and the Computer-Aided Design of electronic circuits :

The technique of simulated annealing has emerged from the very difficult problems
encountered in trying to optimize the design of electronic circuits 12 ; this is still the field
in which it is in most current use. In this section, we shall describe the problems
encountered in automating the design of hybrid circuit modules, and the performances
achieved by using simulated annealing. The optimization problem to be solved is the
placement of the components, viewed as rectangular blocks of various sizes, given the
"net-list", i.e., the list of the connections which are to be made between the various
blocks present on the circuit. The subsequent step is the automatic drawing of the
connections themselves. The introduction of a "temperature” in this context is very
natural, as illustrated on Figure 1 : given a "random” initial placement and wiring, which
is obviously not optimum, an ideal Computer Aided Design program should be able to
turn it into a regular placement, with straight connections, thereby performing a
"transition” between a disordered state and an ordered state.

Hybrid circuit technology is an intermediate technology between the familiar printed
circuit technique and the sophisticated and expensive integrated circuit technology. A
module consists in an insulating ceramic substrate, on which components such as
capacitors, diodes, transistors and integrated circuit chips are bonded, either in
miniature packages, or naked (for integrated circuits) ; resistors and connections are
made of resistive inks and are silk-screened onto the surface. The typical length in
hybrid technology is 50 um, as compared to 1 mm for printed circuits and 1 um for
integrated circuits. '

In a typical electronic circuit design process, the first step is the schematic capture,
which results in a graphics file containing the symbolic description of the circuit, and in
several text files including the net-list which is necessary for the placement and routing
phases. For the placement itself, the geometrical characteristics of the blocks are

extracted from a data base containing the components used in the design of the
modules. The placement obeys two kinds of rules :

- the design rules are intended to guarantee the proper operation of the circuits :
examples of such rules are minimum component spacing, minimum spacing between

components and connections, etc. These rules must be satisfied at the end of the



FIGURE 1 :
The design of an electronic circuit viewed as a disorder to order transformation.
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placement and routing phase

- the know-how rules have been designed empirically by engineers in order to facilitate
the subsequent routing phase. These rules may be violated locally at the end of the
placement phase.

The main difference between the placement of hybrid circuits and the floor-planning of
integrated circuits is the following : in integrated circuit technology, the cells which are
to be placed cannot overlap, whereas hybrid circuit technology does allow overlaps : a
resistor, being made of a resistive paste, is completely flat, so that a packaged
integrated circuit, for instance, may be placed above it ; this is true only for resistors that
do not need any dynamic adjustment by laser trimming.

Therefore, the placement program has to take into account both the design rules and
the know-how rules, with the above-mentioned increased complexity for block
overlaps. Moreover, since placement by simulated annealing is a time-consuming
process, the placement obtained should allow a very easy routing, with only minor
changes to the placement, whereas, in standard placement and routing processes, the
routing phase may alter the placement extensively.

The necessary ingredients for a simulated annealing placement program are :

- an initial placement,

- an initial temperature,

- elementary moves defining a topology in state space,

- a cost function,

- an annealing schedule.

Two possibilities exist for the initial conditions : one may either use a random initial
placement and a high initial temperature, or choose a realistic initial placement and
use the simulated annealing technique, starting at a relatively low temperature, for
improving this initial situation. The second alternative was chosen, the initial placement
being made by a constructive procedure, whereby the most highly connected
components are placed first, then the second most connected chips, and so on. This
algorithm is very fast and gives an initial placement which, in general, satisfies the
design rules and violates the know-how rules extensively.

The cost function included several terms, the leading terms being the connection
length, the overlaps between blocks and the design rules. Other terms took the
know-how rules into account, the respective weights being such that the algorithm first

took care of the design rules, and subsequently of the know-how rules, just as a design
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engineer would do.

The annealing schedule used basically the standard temperature variation, with a
geometrical decrease by a factor of the order of .9 ; however, this schedule is adaptive
since it takes into account the depth of the minima encountered during the evolution in
state space.

As an illustration of the results which were obtained, Figures 2 and 3 show the initial
and final states, respectively, for a simple module. The initial state was designed
manually ; the total value of the cost function was of the order of 16,000 , including a
contribution of 9,000 from the connection length and a contribution of 7,000 from the
violations of the know-how rules. The cost function was decreased by a factor of 2,
mostly through a drastic decrease in the violations of the know-how rules, the
contribution of which dropped to a value of 10, but also through a decrease of the
connection length by approximately 15%. It is interesting to note that the automatic
procedure complies with the know-how rules better than the experts themselves | The
required CPU time in this example was 3 minutes of Amdahl V7.

Figure 4 shows a more complicated case in which the ability to perform the routing
operation is obviously critical. In general, the choice of the cost function allowed the
drawing of the connections with only minor changes to the placement. In all cases, the
routing was done by conventional maze-running algorithms.

In conclusion, simulated annealing has turned out to be an efficient tool for the design
of hybrid circuits : the problem with this technology is not a matter of number of
components, as is the case for integrated circuits, but a matter of complex design rules.
The algorithm has been adapted successfully to the special features of this technology.

2) Other engineering applications of simulated annealing :

Engineering applications of simulated annealing can be divided broadly into two
classes :

- optimization problems,

- inverse problems.

The essential difference between the two classes of problems is the following : in
optimization problems, one searches an acceptable optimum among a large number of
possible optima corresponding to similar values of the cost function ; all optima having
the same energy are considered equivalent. Conversely, in inverse problems, there is

only one acceptable solution, namely, the real cause of the observed phenomena ; in
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FIGURE 2 :

Initial configuration of a hybrid module (designed manually).
Total cost function : 16,000.
Connection length : 9,000.

Overlaps : 7,000.
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FIGURE 3:

Final configuration of the above hybrid module (after annealing).
Total cost function : 8,000

Overlaps : 10.
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FIGURE 4 .
A "difficult” case for routing.
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image restoration, for instance, one tries to find the original image, not any image
giving the same cost function. Therefore, inverse problems have specific features which

standard optimization problems do not exhibit.

a/ Inverse problems :

The most spectacular application of simulated annealing to inverse problems is
probably the interpretation of seismic data by D. Rothman3. The problem is to
reconstruct the geological structure of the terrain from information gathered from the
propagation of sound waves in the structure. In the same spirit, applications in
tomography by Paxman et al.% use simulated annealing in order to reconstruct 3D
objects from 2D images. This is done by making an initial guess of the actual object,
alter it randomly, compute the resulting image and minimize the difference between the
computed and real 2D images.

Another inverse problem is the deblurring of binary images5. A general framework was
proposed by Geman et al.f, using a Bayesian approach for estimating the noise and

the image.

Optimization problems (other than placement and routing in electronic

Simulated annealing has been used in a variety of fields ; one can make the general
statement that whenever an optimization problem can be solved by iterative
improvement, it can be solved efficiently by simulated annealing. Other
problem-specific strategies may be more efficient, but the strength of simulated
annealing lies in the simplicity of its implementation and the variety of problems that it
can solve.

Several problems in operations research have been successfully attacked by this
technique : cloth cutting7, task schedulings, the planning of office buildings9, the
warehouse problem (using the grand canonical ensemble)m, etc...

Finally, two applications in electronics can be mentioned : one of them aims at
simplifying the construction of electronic circuits in wire-wrapping technique 1 the
other consists in optimizing the symbolic drawing of electronic schematics in order to

improve their legibility 2.

3) Conclusion :
The technique of simulated annealing is gaining wide acceptance because of its
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success both on "model" problems such as the traveling salesman problem, and on
practical applications ; it is one of the manifestations of the fact that there is a strong
interrelation between the concepts of statistical physics and those of combinatorial
optimization. From a practical standpoint, developments may be expected in two
directions : first, there is a clear need for problem-independent results on the
convergence of the method, the annealing schedule3, the influence of the cost
function, etc. ; secondly, the parallelization of the algorithm may be necessary for very
complex problems which require a large computing power1 4-16, Anyway, simulated
annealing is already present in the toolbox of combinatorial optimization and

operations research.

il -NEURAL NETWORKS AND INFORMATION PROCESSING :

The renewed interest in the collective computational properties of assemblies of simple
neuron-like elements, triggered by J. Hopfield's work!7 has spurred developments in
two directions : biological modelling and information processing ; obviously, the
distinction is not quite as clear-cut as that, and many investigations are aimed at
bridging the gaps between these fields. One important distinction between the two
approaches is the "local" or "non-local" nature of the learning rules ; this issue will be
discussed below, and in a more detailed fashion in Ref. 18.

In the following, we show that neural networks can be used efficiently to perform pattern
recognition, or, more generally, as distributed associative memories. Such systems are
highly parallel and provide collective decisions distributed both in space (each neuron
takes a decision), and in time (the state of the network evolves until it reaches a fixed
point, which characterizes the final decision). These networks exhibit learning abilities
since their structural parameters can be computed, from predetermined items of

information, so as to impose dynamic behaviour constraints in state space.

We consider, a fully connected network of n deterministic Mc Culloch-Pitts formal

neurons operating in parallel with period t , without "sensory inputs". The coupling

coefficients will be called Cij and the thresholds will be taken equal to zero. The state
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of a neuroniat time t, oi(t), is a binary variable with value +1 or -1, which depends on

the state of the other neurons at time t- t© in the following way :

o;(t) = sgn( vj(t-t)) if vi(t-t) # 0

(1)
o) = o (t-7) it vi(t-1t) =0

n

where vi(t-1) = X Cij cj(t—'c) is the membrane potential of neuroni at time t-t.
j=1

Matrix notations can be used because of the parallel iteration dynamics : if o(t) is the

vector whose components are the o;i(t) and C = {Cij}v the network computes its
(n-dimensional) "vector potential”
v(t-t) = C o(t-1) ,

and finds its next state vector o(t) after the threshold operation (1).
In the following, we address the problem of computing the matrix C so as to impose

given dynamical constraints in state space.

1) " Digging holes™ in state space :

In this section we show that it is possible to store any set of prototype states as fixed
points of the dynamics (states invariant in time)18. Moreover the following desirable
features are obtained :

- the prototype states act as attractors ;

- the non-prototype fixed points are useable ;

- no cycle occur.

Assume that we want to impose p prototype states 0’1, o2... 6P as fixed points ,

which will be shown later to be attractors. The coupling coefficients must satisfy the

following system of n.p inequalities :

(Cj ij) 20 i=1,..n ; k=1,...p
)
but it is sufficient to solve the following linear system of n.p equations :
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2z Cij K= oK

J i i=1,..n; k=1,...p
J

The above condition can be written in matrix form :

CZ=2X

where ¥ = [61, c2... (sp] is the (n,p) matrix whose columns are the prototype

vectors.

This equation has an infinite number of solutions20 :
C=xzt+B(I-z=I)

where 37 is the pseudoinverse of £, B is an (n,n) arbitrary matrix, and | is the identity
matrix.

As far as associative memory properties are concerned, the most appropriate solution
is obtained forB=10:

C=xx! (2)

It is the orthogonal projection matrix into the subspace spanned by the p prototype
vectors. However, other choices for matrix B have proved to be useful for other
purposesZ1. Relation (2) will be referred to, in the following, as the projection rule.

The coupling matrix C can be computed iteratively by introducing sequentially the
prototype vectors, as usual in most learning processes ; suppose that k-1 patterns have

been learnt and that we want to learn a new pattern, the increment of matrix C will be:

uk uKT

AC(K) =
| uk |2

where uK = oK - vK with vK = C(k-1) oK.

Li.4 is the subspace spanned by the k-1

previously learned patterns.

An important issue in the choice of learning rules is their local nature. If biological

plausibility is of importance, the learning rule must be local : the computation of a
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coupling coefficient Cij should require only informations available locally at neurons i

and J. If, conversely, one is interested in devices, the local nature is usually irrelevant ;
indeed, the projection rule is not local in general. However, for weakly correlated

prototype vectors, it can be approximated by the following local rule :

ACji(k) = (1/n).(of o - g K- vk o)

The first term is just the classical "Hebb's rule", inspired by the work of the
neurophysiologist D. O. Hebb22 ; the last two terms take into account the information
that has been learnt previously.

The study of the dynamics shows that a network designed after the projection rule
(relation (2)) exhibits the desired associative properties mentioned at the beginning of
this section. First, we define the following Lyapunov function (which is similar to the
energy of spin systems) :
E(0) =-(1/2) X Cjjoj 5, =-1/2 (¢ C o)
L)

This is an ever decreasing function during the free evolution of the system18.
Therefore, any evolution of the network will end up in a fixed point, so that no cycle can
occur . Moreover, since the prototype states have the lowest possible energy, they act
as attractors of the system. Thus, the state space is partitioned into several basins of
attraction, the bottom of which are the fixed points.

The following Figure shows a geometrical interpretation in Euclidean space of one

iteration.

Starting from a state o, the network performs two minimizations in order to reach its
next state ¢’ :

i) v=C o is the orthogonal projection of o into the subspace Lp spanned by the p
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prototype vectors. Therefore, it is the linear combination of prototype states which is

closest to the subspace Lp ; in other words, v is the best possible approximation of the
unknown pattern in terms of a linear combination of the learnt patterns.

i) o'is the vector belonging to {-1,+1}" which is closest to v.

Consequently, if o itself is the vector of {-1,+1}1 which is closest to v, ¢ is a fixed
point ; the fixed points are "thresholded" linear combinations of the prototype states .
We shall see in the following that these states play a crucial role in the decision taking
process. The dynamics of the present model of neural networks has been studied
extensively (albeit in a slightly modified form) by H. Sompolinsky et all®.

The projection rule can be used for error correction purposes, as illustrated in
reference 18. An example of a classification task will be shown in the section devoted

to character recognition.

2) "Digging valleys" in state space :

In this section we address the more general problem of imposing a set of transitions
between states. The learning rule which is proposed allows to memorize either stable
states, as the projection rule does, or sequences of transitions and/or cycles. It provides

a new tool to perform associations.

Assume that we want to impose p one-step transitions in state space defined by :

k

ok - o'k k=1,...p

The coupling coefficients must satisfy a system of n.p inequalities :

(2 Cj ij) ok >0 i=1,..n ; k=1, ...p (3)

j
and, following a similar derivation as in the previous section, we compute matrix C by
the following relation :
C=xx! (4)

where =' = [0'1, 6'2... 6'P],
which is a solution of (3) if =' =T £ = 3'. Relation (4) will be called the associating rule ;

it minimizes the euclidean norm of the error matrix C Z- Z'. Notice that if all the
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imposed transitions are such that o'kK= ok, the associating rule reduces to the
projection rule . Similarly, the associating rule can be put into an iterative form.

In reference 18, as well as in the section devoted to character recognition, we have
used the associating rule for classification tasks. Several informations are associated
to their class by a one-step transition and the class itself is made a fixed point. After

learning, the network is able to classify successfully many unknown informations, but, if

the information is too distorted, the network goes to a non-prototype fixed point 6* or
"garbage state". However, if this nonprototype fixed point is undesired, it can be
eliminated by imposing one extra transition :

o — O'k

In this sense the associating rule can "dig valleys" in state space.

3) Character recognition :

Handwritten character recognition is an engineering problem which has been
extensively studied for two decades. Software implementations of handwritten
character recognition systems require a high computing power. We show in the
following, that neural networks can be used as simple parallel computing devices
which perform character recognition. We have tested the ability of neural nets,
designed after the above two learning rules, to solve an actual handwritten numeral

recognition problem. More specifically, we are interested in the recognition of postal

codes.

Video AUTOMATIC | Binary CHARACTER Binary
CAMERA \—7gnal”| THRESHOLD |[signal®| SEPARATION [Character
B

a/ Description of the data acquisition system.
A solid state camera gives a video signal which is the image of a postal code. This

signal is preprocessed by an automatic threshold device, the purpose of which is to
compensate for the contrast variations. Thus, a binary image of the postal code is

obtained. Each numeral is subsequently isolated by a hardwired device and is
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subsequently stored in a 32x32 bit memory (RAM). Each numeral is automatically
positioned in the upper left corner of the memory. A numeral is thus represented by a
vector of 1024 binary components (pixels).

Several classical methods in character recognition involve various other preprocessing
tasks which aim at suppressing the undesired sensitivity to geometrical transformations
(translations, rotations, etc.). A well-known technique is based on the extraction of
binary features describing the topology of the drawing (bays, loops, intersection of line
segments, etc.), which gives a second representation tolerant to distortions,
translations, slight rotations, style and scale variations of the characters. We show in
the following that a proper choice of the prototype patterns allows recognition without
any preprocessing other than the automatic thresholding : the 1024 binary pixel
representation of characters can be used directly. This straightforward representation is
probably non-optimal ; nevertheless, it helps testing the efficiency of the proposed
learning rules, and gives satisfactory results as far as character recognition is

concerned.

b/ Use of a coding field.

Automatic character recognition is essentially a classification problem, in which we are
interested only in identifying unknown characters. Thus, we are led to specialize some
neurons for an identification task, which means that we add a coding field to the
information vector23,

The proposed classifier is based on the following construction of the state vectors. They
have two distinct fields : the first field, denoted by e , is devoted to the pattern itself
(1014 components), and the second, denoted by ¢ , to the class code (10 components).
We consider several prototypes per class, corresponding to several styles for a given

numeral. During the learning phase, each prototype pattern ek belonging to the class

r (1<r<10)is associated to a coding field cf. The code has -1's only, except for the

rth position ; for example, the prototypes of the 4th class are coded by the field:
=111 +1-1-1-1-1-1-1]T

During the classification phase, an unknown pattern is presented to the network with a

code field having -1's only. After some parallel iterations, a fixed point is reached. The

unknown pattern is attributed to the class corresponding to the code of the fixed point.

The decision process can be analyzed as follows : at each iteration, the network first

computes the potential vector which is a linear combination of the prototypes :
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p
V=2 akck,

k=1
the value of ay representing the weight of the prototype oK in the linear combination

of the prototype states (which is the best approximation of the unknown pattern at this
step of the free evolution of the network). The choice of the coding scheme leads to the
following decision process after thresholding : in the coding field, the state of the
neuron related to the class r takes the value +1 if :
2o > X a.

keclassr ke classr
The coding field of the final fixed point can have :
- only one "+1" component : an unambiguous association is achieved;
- no "+1" component, or several "+1" components : the network gives an ambiguous

response to an ambiguous piece of data, so that the character is not recognized.

EVOLUTION

Initial
state

il

[TITTIIITD O EEERANENN | ENENENEN | (SUNRENANY |

Blank code \ Code for number 1 /

o is -1
m is "+1'

CODE :

A point of fundamental importance in this scheme is the following : nonprototype
attractor states which are mixtures of various styles of one character have the code of

that character. This is exemplified below.
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¢/ Results.

The classifiers have been simulated on the CIRCE computers (3080 NAS and 3090
IBM).

Projection rule.

After the memorization, with the projection rule, of 44 prototype handwritten numerals
with their 10-bit code (figure 5.a), 250 unknown patterns were presented to the network;
approximately 80% of them were well recognized (with the right code), 10%
misclassified (with a wrong code) and 10% unrecognized (with a meaningless code).
Some examples of evolutions are given in figure 5.b. One should notice that some of
the correctly recognized characters lead to fixed points which are not present in the
training set, but look like the patterns to be recognized, and have the right code : they
are "thresholded” linear combinations of prototype patterns with similar shapes. The
thresholded linear combinations of prototype patterns with non-similar shapes act as
"garbage" collectors ; they have a meaningless code.

A more detailed analysis can be presented : 40% of the iterations lead to a prototype
state, among which there are less than 1% misclassifications ; 60% of the iterations
lead to a thresholded linear combinations of the prototype states, approximately 2/3 of
them are well recognized (i.e. have the right code), 1/6 are misclassified and 1/6
unrecognized. The energy of the well recognized thresholded linear combinations is
lower than the energy of the other thresholded linear combinations. Thus, the evolution
in state space can be interpreted as follows : the projection rule generates many low
energy stable states near the bottom of the basins of attraction, which can be used for
pattern recognition, and also a lot of bumps at the top of the energy barriers, which act
as traps for unrecognizable states. Therefore, the thresholded linear combinations of
the prototype states too often termed "spurious” states, are used to our advantage : they
double the efficiency of the pattern recognition. It has been argued that modifying the
present model by equalling the diagonal term of the synaptic matrix to zero increases
the bassin of attraction of the prototype states. This is indeed true ; however, a price has
to be paid : the synaptic matrix is no longer a projection matrix, so that the pattern
recognition capability is degraded. We have tested this idea with the same prototype
patterns and we have observed that the number of misclassifications is significantly

increased.
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FIGURE 5 : Character recognition : projection ru

Number of neurons : n = 1024,
number of prototypes : p = 44.

a. The prototype states.
b. Examples of evolutions.
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Associating rule.

In order to compare with the previous example, we have stored the same 44
handwritten numerals , with their 10-bit code, using the associating rule. The imposed
transitions are shown in figure 6.a. The neural network classifier has been tested with
the same 250 unknown patterns , with the following results : approximately 80% of the
patterns are well recognized, the others are misclassified and only a small percentage
are unrecognized. Some examples are shown in figure 6.b. The results can be
interpreted as follows : the associating rule digs wide basins of attraction for each class
of numerals, and very few non imposed attractors appear ; the network almost always
reaches one of the imposed fixed points. This can be very suitable for some other
classification application but, for character recognition, it is highly desirable to have
more unrecognized than misclassified patterns. Therefore, for this application, we shall

prefer networks designed with the projection rule.

Comparison with Hebb's rule.

The ability of neural networks designed with the above presented rules to store and
retrieve information has been compared to that of a network designed after Hebb's rule.
The training set is the same as in figure 3.a. No character whatsoever are recognized if

Hebb's rule is used, and all the evolutions lead to a single huge attractor.

Comparison with classical methods.

Two other methods of comparable complexity have been tested for the same example:
the method of comparison of distances and the optimal linear classifier?3: 24,

The method of comparison of distances consists in computing the Hamming distances

H(G,Gk} between the unknown pattern ¢ and the prototype patterns oK. The

classification is performed by considering the first and the second nearest neighbors

(c* and GB) of o, with two thresholds A (absolute) and D (differential). The

classification procedure is the following :
i) If H(c,0%) >A, o is unrecognized ;
i) If H(c,0%) < A,
- if c® and O'B belong to the same class, ¢ is attributed to this class ;

_if 6® and oP do not belong to the same class,
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- if H(O‘,GB) - H(o,6%) > D, o is attributed to the same class

as o%

- if H(o,oP) - H(o,6%) < D, ois unrecognized.

Conversely, the optimal linear classifier?3 uses the global information present in the

prototype family: like the neural network in the first iteration, it involves the orthogonal

projection of the the unknown pattern ¢ into the subspace spanned by the prototype

k

vectors ¢". More precisely, this classifier computes the product of a (¢,n) matrix

C=Fz!,
by the vector o, where ¢ is the number of classes, =' is the (p,n) pseudoinverse matrix

of X,and F a(c,p) matrix such that F,=1 if o belongs to class r and zero else.

The classification is performed by considering the two largest components of Cg, with
two thresholds A and D, in a way similar to the method of the comparison of distances.

Notice that the decision for the two above classifiers is taken in one step, whereas the
decision of neural networks is distributed both in space and in time thus giving them a

robustness which is absent in the other methods.

The same set of examples as in figures 5 and 6 has been used to test these two
classification processes ; the results are shown in figure 7 together with the results
obtained with the neural networks. We have plotted three proportions : proportion of
recognition, proportion of misclassification and proportion of unrecognition. The
adjustment of the decision thresholds A and D allows to decrease the proportion of
misclassification by introducing the possibility that the system refuse to classify some
dubious patterns, but, correlatively, the proportion of recognition also decreases. The
choice of the thresholds A and D must achieve a compromise (fig. 7.2 and 7.3), and it
can be noticed that there is no such degree of freedom for the neural networks. The first
a) columns for each method show a good proportion of recognition balanced by a high
proportion of misclassification : the associating rule is used for the neural network and
the differential threshold D is set to zero for the other methods. In the second columns
b) the proportion of unrecognition is emphasized : it is achieved, for the neural
network, by using the projection rule which introduces the "garbage states" ; for the
other methods, it is achieved by ajusting the differential threshold D so as to have
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Unrecognized

Misclassified

(@) (b) (@) (b) (a) (b)

FIGURE 7 : Character recognition : comparison with other classifiers.
1.Neural network designed after :
a) the associating rule,
b) the projection rule.
2. Comparison of distances method :
a) A=130, D=0,
b) A=130, D=10.
3. Optimal linear classifier :
a) A=.2, D=0,
b) A=.2, D=.06.
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more conventional, and better established, methods. We have presented some
preliminary results which show that neural networks, in their present state, can be
competitive ; obviously, much progress is still needed in order to outperform classical
approaches, but, considering the youth of this subject, many new developments can be

expected.
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almost the same rate of misclassification for the three methods. We can notice that,

comparing to case a), the rate of recognition is worse except for the neural network.

Notice that the choice of the prototype patterns and their number per class is still an
open problem for all the mentioned methods ; in the present examples, we have used
empirical criteria based on the study of the Hamming distances between patterns taken

from a set of 250 examples ; this choice is not yet optimized.

4) Conclusion :

We have presented two learning rules for networks of formal neurons :

- the projection rule "digs holes" in state space because it allows to memorize as
attractors any set of prototype states;

- the associating rule "digs valleys" in state space because it can impose transitions
between states.

We have shown that it is possible, by using directly the pixel representation, to perform
character recognition tasks. An important point is that the projection rule generates
non-prototype fixed points which are useful : they double the efficiency of the pattern
recognition.

Finally, we have compared the networks of formal neurons to other methods of
comparable complexity ; the result is that the networks of formal neurons are already

competitive, even though the choice of the prototype patterns is not yet optimized.

IV - CONCLUSION :

The engineering applications which have been presented in this paper are widely
different in nature. Simulated annealing is more and more routinely used, and is here
to stay as an engineering aid for very complex problems ; neural networks are not so
mature as far as applications are concerned, but they are rapidly gaining much

industrial interest ; one of the issues is, of course, their efficiency as compared to that of
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