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Abstract- Several studies showed that EEG signal of 
Alzheimer’s disease patients is less complex than that of healthy 
subjects. In this article, we propose to characterize the 
complexity of the EEG signal by an entropy measure based on 
local density estimation by a Hidden Markov Model. We first 
show that this measure leads to consistent results qualitatively 
and quantitatively (in terms of classification accuracy). Indeed, it 
discriminates AD patients, at an early stage of Alzheimer’s 
disease, from healthy subjects: a classification accuracy of 80% is 
reached on a dataset including EEG data recorded in different 
conditions. Based on this measure, we also show that parietal and 
temporal regions are the first regions affected by complexity loss 
in the early stage of Alzheimer’s disease. 

 Keywords - EEG signal; Complexity measure; Stationary 
epochs; Entropy; HMM; Alzheimer’s disease. 

 

I.  INTRODUCTION  
Alzheimer’s disease (AD) is a neuro-degenerative disease 

characterized by a progressive and irreversible brain disorder. 
It is the main cause of dementia in western countries, affecting 
5-10% of the population above the age of 65 [1]. Moreover, as 
the life expectancy increased significantly in western countries 
in the last decades, the number of patients is expected to reach 
115 million in 2050 [2].  

The causes of AD are not clear; however it is characterized 
by a widespread neuronal cell destruction, cortical atrophy, 
intracellular deposition of neurofibrillary tangles, and 
extracellular deposition of senile plaques, especially in the 
hippocampus and cerebral cortex [3]. Currently, there is no 
treatment that can reverse the symptoms of the disease but 
many studies have indicated that therapeutic interventions at 
the early stage of AD can slow down the evolution of the 
disease [4,5]. Additionally, a reliable early diagnosis of AD 
enables a person with AD and his/her family to receive help in 
understanding this type of dementia and to take appropriate 
steps for the future. Therefore, a reliable early diagnosis of AD 
becomes an important issue for the scientific community. 

In recent years, several researchers exploited the 
electroencephalogram (EEG) as a potential tool for diagnosing 
AD. Nevertheless, diagnosing AD in EEG signals remains a 
challenging issue as most existing techniques do not lead to a 
reliable diagnosis [6,7]. Several studies have shown that one of 

the major effects of AD is the reducing in complexity of the 
EEG signal compared to that of healthy subjects [8]. However, 
it is not always easy to detect such effects because of the large 
inter-variability that exists between AD patients.  

Many methods were proposed to estimate the complexity of 
the EEG time series as a potential marker of early AD 
diagnosis. The correlation dimension [9] and the Lyapunov 
exponent [10] were frequently used. It was demonstrated that 
AD patients exhibit lower values of such measures than healthy 
subjects. The complexity of the signal was also measured using 
the fractal dimension [11]. The “complexity” or “irregularity” 
of the signal was also assessed by different measures stemming 
from information theory [12-20]: sample entropy [12,13], 
Tsallis entropy [14], approximate entropy [15,16], multiscale 
entropy [17], mutual information [18] and Lempel-Ziv 
complexity [19]. Such measures were shown to be useful in the 
analysis of EEG activity in AD patients. However, they were 
computed on the whole EEG signal without addressing the 
problem of its “non-stationarity”. Some studies inferred that 
EEG time series are “quasi-stationary” [20,21]: the authors in 
[20] claimed that the EEG signal could be modeled as a 
sequence of quasi-stationary segments (“epochs”) separated by 
rapid transitions. Also, in [21], the author suggested that 
perception is based on sequences of stationary patterns 
demarcated by discontinuities. 

In this study, we attack the problem of quantifying the 
complexity of the EEG signal by means of a refined entropy 
measure computed on “stationary” epochs. The concept of 
entropy was introduced by Claude Shannon [22] in 1948, and 
is often referred to as “Shannon entropy”.  It is widely used in 
physics and information theory. In information theory, entropy 
measures the “uncertainty” related to a random variable, 
relying on its distribution. In physics, entropy is a measure of 
“chaos” or “disorder”: higher entropy is often associated with 
more randomness and less system order. Thus, the more 
complex the signal, the higher its associated entropy measure.  

Different estimators have been introduced to quantify the 
entropy of time series. In this work, we propose an entropy 
measure, which is derived from a refined characterization of 
the local statistical properties of the EEG signal by means of a 
Hidden Markov Model (HMM) [23]. We show that a better 
discrimination between early-stage AD patients and healthy 



subjects can be performed by characterizing the EEG signal 
locally (at the “epoch” level).  

The remainder of the paper is organized as follows. In 
Section 2, the proposed complexity measure is presented after a 
brief recall of Shannon Entropy. In Section 3, we describe the 
EEG databases used for experiments. In Section 4, we analyze 
and discuss the obtained results. Finally, conclusions are stated 
in Section 5.   

 

II. COMPLEXITY MEASURES 
In this section, we describe our proposed entropy measure 

after a brief recall on the computation of Shannon entropy. 

A. Shannon entropy 
Shannon entropy of a discrete random variable Z with N 

possible outcomes zi, i = 1…N, is defined by: 
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where 𝑝! is the probability mass of outcome zi with ∑ =
i
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Entropy is thus a measure of how uniformly distributed the 
random variable Z is across its possible outcomes: if there are 
N outcomes, then entropy is maximized at 𝑙𝑜𝑔!(𝑁) with 
all  𝑝! = 1/𝑁. Base 2 logarithms are used, in order to express 
entropy in bits. Shannon entropy is the number of bits on 
average required to describe the random variable. 
 

B. The proposed entropy-based complexity measure 
The entropy measure that we propose is based on the 

assumption that the EEG signal is piecewise stationary, i.e. can 
be viewed as being stationary at the time scale of an epoch. In 
this framework, left-to-right Hidden Markov Models [23] 
(HMMs) are good candidates for performing the task, because 
they can segment the EEG signal into epochs (states of HMMs) 
and perform a local estimation of the probability density on 
each epoch. The states of HMMs will correspond to the 
stationary parts of the EEG signal, and the transitions of 
HMMs will correspond to the variations of the signal. 

We thus consider the EEG signal of a given subject as a 
succession of epochs, obtained by segmenting such a signal via 
the Viterbi algorithm [23] using the corresponding subject’s 
HMM. Viterbi algorithm is a widely used algorithm in HMMs 
to find the best state sequence [23]. It can be viewed as a 
modified forward algorithm: instead of summing up the 
probabilities from all the different paths, we pick only the 
optimal path, called “Viterbi path”. 

We thus obtain as many epochs in each EEG signal as there 
are states in the subject’s HMM. Then we consider each local 
observation (i.e. each point) in a given epoch 𝑆! as the outcome 
of a random variable 𝑍! that follows a given probability mass 
function  𝑃!(𝑧). Thus, a random variable is associated to each 
stationary epoch of the signal (Figure 1), and the entropy of the 
considered epoch is that of an ensemble of outcomes of  𝑍!   : 

)2())((log).()( 2∑
∈

−=

iSz
i zpzpZH  

The sampling period (typically 8ms) is small with respect to 
the epoch length (typically 250ms). Thus, although Z is a 
discrete variable, we take advantage of the continuous emission 
probability law estimated on each epoch by the HMM. In other 
words, we consider 𝑝 𝑧   as the value of the probability density 
function estimated at the outcome z. The density functions 
were modeled as mixtures of Gaussians.  

                        
Figure 1: Epoch-based Entropy computation 

 
Finally, by averaging the entropy over all the epochs of the 

EEG signal of the considered subject, we obtain an entropy-
based complexity value, called in the following “Epoch-based 
Entropy”.  

 

III. DESCRIPTION OF DATABASES 
Three datasets containing EEG recordings of healthy 

subjects and AD patients at rest and with closed-eyes 
conditions were used [24,25,26]. These datasets differ in terms 
of the number of used electrodes and the sampling frequencies.   

A. Database A 
This dataset was acquired at the Derriford Hospital, 

Plymouth, UK. It contains EEG data of 24 healthy subjects 
(aged 69.4 ± 11.5 years) and 17 diagnosed with mild form of 
AD patients (aged 77.6 ± 10 years). Patients underwent 
different neuroimaging and cognitive tests. EEG signals were 
recorded during 4 min at a sampling frequency of 256 Hz, later 
down-sampled to 128 Hz using 19 electrodes disposed 
according to the Maudsley System.  

B. Dataset B 
This dataset contains EEG data of five age-matched healthy 

subjects (aged 76.6 ± 5.6 years) and five AD patients (aged 
78.8 ± 2.4 years). Patients were diagnosed with early stage, 
mild form AD according to NINCDS-ADRDA and DSM IV 
criteria; they underwent general medical, neurological and 
psychiatric tests. EEG signals were recorded during 1 min at a 
sampling frequency of 128 Hz using 21 electrodes disposed 
according to the 10-20 international system at the University of 
Malta. 

C. Dataset C 
This dataset is obtained from the Ecological University of 

Bucharest. It consists of three healthy subjects (aged 73.5 ± 2.2 
years) and eight age-matched AD patients (aged 75 ± 3.4 



years). Patients were diagnosed with a mild form of AD using 
psychometric tests, neuroimaging and clinical examinations. 
EEG signals were recorded during 10 to 20 min at a sampling 
frequency of 512 Hz using 22 electrodes disposed according to 
the international federation of clinical neurophysiology 
standards for digital recording of clinical EEG. In this work, 
EEG signals of this dataset were down-sampled to 128 Hz as 
done for dataset A and dataset B.  

 

IV. RESULTS AND DISCUSSION 
In order to assess the effectiveness of the proposed entropy 

measure to discriminate AD patients from healthy subjects, we 
compare it in the following section to the classical Shannon 
entropy in terms of classification accuracy. 

A. Epoch-based Entropy vs. Shannon Entropy 
For comparison purposes, we compute both Shannon 

Entropy and Epoch-based Entropy associated to the EEG signal 
of each subject from the considered dataset. Then, 
classification performance is computed directly on the whole 
dataset by comparing the considered entropy value of each 
person to a decision threshold.  

      Table I presents the classification accuracies with Shannon 
Entropy and Epoch-based Entropy for the three datasets. As 
Receiver Operating Characteristic Curve (ROC) analysis was 
used to compare the two entropy measures in terms of 
classification accuracy (see Figure 2), we also report in Table 1 
the area under the curve (AUC) values.  

TABLE I.  CLASSIFICATION ACCURACIES (IN %) AND AUC VALUES ON 
EACH DATASET WITH SHANNON ENTROPY AND EPOCH-BASED ENTROPY 

 

 Figure 2: ROC Curves on each dataset with Shannon Entropy 
and Epoch-based Entropy. 

 
Results show that the proposed entropy outperforms 

Shannon Entropy in terms of discrimination between AD 
patients and healthy subjects. This can be explained by the fact 

that even if our proposed entropy measure is averaged over all 
the epochs of the EEG signal, it is derived from a refined 
characterization of the local statistical properties of the EEG 
signal by means of Hidden Markov Models. 

Figure 3 displays examples of signals with different 
complexities and different values of Epoch-based Entropy. 
This entropy measure indeed reflects the complexity of the 
signal: the more complex the signal, the higher its associated 
entropy value. 

 
Figure 3: Examples of signals with differents complexities and 

their corresponding Epoch-based Entropy values. 
 

B. Classification performance with Epoch-based Entropy 
In this section, we assess classification performance with 

Epoch-based Entropy, following a consistent protocol that is 
more adapted for real clinical applications: we use a 
development subset containing EEG data of 10 AD patients 
and 10 healthy subjects belonging to Set A. The entropy values 
associated to these 20 subjects are computed. By averaging 
such values per class, we obtain two “Entropy-Prototypes”: one 
associated to the class of AD patients and the other to the class 
of healthy subjects.  

For the test subset, we consider the remaining 17 data of 
Set A, and in addition the data of Set B and Set C to analyze 
the ability of the entropy-based classifier to generalize to data 
that are independent from the development subset. For each 
subject in the test, we compute the entropy value of his/her 
EEG signal. Then for classification decision, each subject is 
associated to the class of the nearest Entropy-Prototype using 
the Euclidean distance. In order to obtain a reliable 
classification performance independent from the chosen 
development subset, five random samplings are carried out on 
healthy subjects and AD patients of the development subset. 
We carried out this experiment per brain region (Temporal, 
Parietal, Frontal and Occipital regions), as these regions are not 
affected by AD in the same way [27].  

For all the subjects, the HMM was trained with 80 states 
(epochs) and 7 Gaussians per epoch. These values, chosen 
empirically, are those leading to the best performance 
classification on the development subset.   

Tables II presents the classification accuracies per brain 
region on the three test subsets (the remaining 17 data of Set A 
(Set A’), the 10 data of Set B and 11 data of Set C) taken 
separately or simultaneously. The accuracies are computed 
considering the five random samplings of the development 
subset. Results show that best performance is obtained with 
temporal and parietal regions: a classification accuracy of 80% 
is reached when considering data of Set A’, Set B and Set C 
simultaneously. This is consistent with the literature [27]: 
parietal and temporal regions are the first affected regions in 
the early stages of Alzheimer’s disease. 

Datasets  Shannon Entropy Epoch-based Entropy 
Accuracy AUC Accuracy AUC 

Set A 73.2% 0.739 87.8% 0.914 
Set B 90% 0.880 90% 0.960 
Set C 81.8% 0.333 81.8% 0.583 



TABLE II.  CLASSIFICATION ACCURACY (IN %) WITH EPOCH-BASED 
ENTROPY PER BRAIN REGION  

Test Datasets Temporal Parietal Frontal Occipital 

Set A’ 83.81% 82.85% 69.52% 63.81% 
Set B 90% 80% 84% 80% 
Set C 63.63% 78.18% 43.63% 61.81% 
Set A’ + Set B 85.81% 81.93% 74.19% 69.02% 
Set A’+ Set B + Set C 80% 80.95% 66.19% 67.14% 
 

V. CONCLUSION 
We proposed an entropy-based complexity measure 

computed on stationary epochs, using a Hidden Markov Model 
that performs local density estimation at the epoch level. Such 
measure discriminates AD patients, at an early stage of 
Alzheimer’s disease, from healthy subjects. The results are 
promising for early stage AD diagnosis: based on the proposed 
entropy measure, a classification accuracy of 80% is reached 
on a dataset including EEG data recorded in different 
conditions.  

However, some limitations of our study deserve 
consideration. The proposed entropy measure was compared to 
the classical Shannon Entropy in terms of classification 
accuracy: we have shown that our entropy outperforms the 
classical one. However, other experiments, aiming at 
comparing such entropies, should be considered: studying the 
effect of noise, sampling frequency and windowing size on 
both entropies. This will be done in a more extended 
publication. 

Finally, in this work, the entropy was computed locally at 
the epoch level, and then averaged over all the epochs. It would 
be interesting to keep the entropy values per epoch; thus each 
EEG signal would be associated to a sequence of entropy 
values. This would characterize more finely how the EEG 
signal fluctuates over time. 
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