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1. Introduction

In the last decade, the scientific community has shown a grow-
ing interest in compounds interfering with the normal endocrine
function of wildlife and possibly humans. Pesticides belong to these
endocrine disrupters active at low concentration and their removal
from surface waters is thus essential [1]. Adsorption onto activated
carbon filters is the most effective and widely used method for
removing pesticides. Traditionally, the breakthrough time, which
indicates the time for termination of the operation and replacement
(or regeneration) of the contaminated adsorbent, is estimated by

Abbreviations: A, atrazin; AC, activated carbon; ADE, atrazin-desethyl; DOC,
dissolved organic compound; EBC, equivalent background compound; NN, neu-
ral network; NOM, natural organic matter; TFSM, triflusulfuron-methyl; TOC, total
organic carbon.
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the process knowledge of managers of drinking water supply sys-
tems, or by measurements of the outlet concentrations. However,
these measurements are expensive and time-consuming.

To overcome the above limitations, models have been devel-
oped to predict the concentration profiles at the outlet of the filter
(“breakthrough curves”). At present, these models are knowledge-
based models based on transient material balance, liquid and
intra-particle mass transfer, and adsorption equilibrium equations,
usually solved numerically using finite element or finite differ-
ence methods [2]. They differ mainly in the assumptions made on
the transfer mechanism(s) within the particles, which can be dif-
fusion in the liquid-filled pores (pore diffusion), diffusion in the
adsorbed phase (surface diffusion), and both mechanisms in paral-
lel. Among mathematical models of current use, the linear driving
force model [3], the pore diffusion model [4] or the homogeneous
surface diffusion model [5] are notable. Such models were used for
describing the breakthrough curves of monocomponent solutions
of metal ions [6], organic micropollutants [7] or dyes [8] onto acti-
vated carbon. Some studies have showed that those approaches are
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Nomenclature

Ci concentration of compound i [M L−3]
C0 inlet concentration in the fixed-bed [M L−3]
C0,i initial concentration of compound i [M L−3]
dp particle diameter [L]
E relative error (defined by Eq. (12))
Ep leave-one-out score (defined by Eq. (5))
f activation function of the neural network
J least square function
k positive constant which describes discrete time,

t = kT
Ki Freundlich parameter of compound i

[M M−1 M3/n L−3/n]
m active carbon weight [M]
M molecular weight [M mol−1]
ni Freundlich parameter of compound i
N number of experimental data
qi adsorption capacity of compound i [M M−1]
RMSET root mean square error on the test set (defined by

Eq. (6))
R

(−k)
k

prediction error on example k when the latter is
withdrawn from the training set

R2
T determination coefficient on the test set (defined by

Eq. (7))
S solubility [M L−3]
t time [T]
T period [T]
u m-vector of external variables

of parameterised functions, and its parameters are estimated by
uj input neuron j
u0 velocity in the activated carbon bed [L T−1]
V volume of the solution [L3]
Vmeso mesopore volume [L3 M−1]
Vmicrosec volume of secondary micropores [L3 M−1]
wij parameters of the neural network, connecting neu-

rons i and j
x n-vector of the state variables
yi output of neuron i
yk prediction of the output by the model for observa-

tion k
ykp measured value of the process output for observa-

tion k

Greek symbols
 difference between experimental and modelled val-
Please cite this article in press as: C. Faur, et al., Modelling the breakthroug
and recurrent neural networks, Chem. Eng. J. (2008), doi:10.1016/j.cej.2008

ues (defined by Eq. (11))
∅med �pores median micropores width [L]

satisfactory for modelling binary dynamic adsorption, but they are
not appropriate in the case of complex multi-solute solutions [9].
In addition, despite most of them rely on mass transfer parame-
ters which are related to pore characteristics known to influence
strongly the adsorption of microorganics alone in solution or in the
presence of natural organic matter [10,11], they do not take them
explicitly into account.

In recent years, neural networks (NN) have been successfully
applied to a wide variety of domains; in the field of water treat-
ment, they have been used, e.g. for predicting the behaviour of
wastewater treatment plants [12], for simulating a combined humic
substances coagulation and membrane filtration process [13] or for
estimating H2O2 addition critical point in a decoloration process
[14]. Neural networks are parameterised non-linear models whose
parameters are estimated by training from examples. They can be
 PRESS
Journal xxx (2008) xxx–xxx

advantageously used when no satisfactory prior knowledge is avail-
able about the physical process, and about the mechanisms that it
involves. Furthermore, they require a smaller number of parame-
ters than alternative parameterised non-linear regression models
such as polynomials: the number of parameters of neural networks
varies linearly with the number of variables of the process, whereas
it varies exponentially for polynomials [15,16].

A neural network (see for instance [17,18]) is a combination of
parameterised functions called neurons. The most popular neural
network (termed multi-layer perceptron) features “hidden” neu-
rons, each of which computes a non-linear function of a weighted
sum of its variables, and an “output neuron”, which computes a
linear combination of the outputs of the hidden neurons. There-
fore, a multi-layer perceptron is essentially a static model, since
it involves merely a combination of functions of the variables of
the process to be modelled. In order to model dynamic processes,
recurrent neural networks are appropriate. In their simplest form
(input–output form), the model output is fed back to its input with
one (or more) unit time delay(s) and is thus a non-linear function of
exogenous inputs and of its past output(s). Input–output recurrent
neural networks are a restricted form of the more general state-
space recurrent neural network [19]. Feed-forward neural networks
were applied successfully to the modelling of adsorption processes
in a static reactor [20,21] or to the prediction of breakthrough
parameters of volatile organic compounds onto a granular activated
carbon [22]. However, despite the widespread use of recurrent neu-
ral networks for modelling non-linear dynamic phenomena (see for
instance [23–25]), they have never been applied to the prediction
of pollutant removal by adsorption onto activated carbon.

The present paper reports an investigation of the adsorption of
three pesticides onto activated carbons (AC) with different charac-
teristics in terms of shapes, dimensions and pore properties. In a
first part, experimental isotherm curves of pesticides in synthetic
and natural waters are modelled to get equilibrium parameters of
monocomponent and competitive adsorption. In the second part
of the paper, the breakthrough curves of activated carbon filter are
modelled by a recurrent neural network, and a feed-forward neural
network as a baseline. Equilibrium parameters assessed in the first
part are considered as influent factors of the model.

2. Theory of modelling by neural networks

By contrast to a knowledge-based approach, a black-box model
relies on measurements only: a model is sought within a family
h of activated carbon filters by pesticides in surface waters with static
.02.015

minimizing the modelling error on a set of available measurements.
Both static and dynamic black-box models can be designed.

In the present work, static models were sought in the family of
feed-forward neural networks with one layer of hidden neurons
(shown graphically in Fig. 1a), where the output yi of neuron i is a
non-linear function f of the weighted sum of its variables uj:

yi = f

⎛
⎝∑

j

wijuj

⎞
⎠ (1)

wij are the parameters of the neuron, and f is its activation func-
tion. Just as in affine or polynomial models, one of the variables
is a constant equal to 1 (called “bias”). When designing black-box
models, the activation function is generally taken as an s-shaped
(“sigmoid”) function, such as a tanh function, which guarantees
the universal approximation property [16]. The output neuron sim-
ply performs a weighted sum of its inputs (without non-linearity)
so that the model output is a weighted sum of the outputs of the
hidden neurons.

dx.doi.org/10.1016/j.cej.2008.02.015
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Fig. 1. Pictorial representations of (a) a feed-forward neural network and (b) a sta
delay.

The “training” of the neural network consists in estimating the
values of the parameters that minimize the least squares cost func-
tion:

J(w) =
∑
k

(ykp − yk(w))
2

(2)

where the summation runs on all elements of an available set of
observations (or “examples”) called the “training set”, ykp is the
measured value of the process output for observation k, yk the
prediction of the model for observation k, and w is the vector of
parameters of the model. Any conventional gradient-based opti-
mization algorithms can perform the minimization of that cost
function with respect to the parameters of the model.

The above description is relevant to static black-box neural mod-
els, which are considered as a baseline in this study. When a
dynamic black-box model is necessary in order to provide an appro-
priate model of the process, the most general form of the model is
the state-space form, which can be written, in discrete time form,
as

x(k + 1) = �(x(k),u(k)), state equation
y(k + 1) = ϕ(x(k + 1)), observation equation

(3)

where x is the n-vector of the state variables, u the m-vector of
external variables, y the model output (a single-output model is
considered here), and k a positive integer that describes discrete
Please cite this article in press as: C. Faur, et al., Modelling the breakthroug
and recurrent neural networks, Chem. Eng. J. (2008), doi:10.1016/j.cej.2008

time (t = kT, where T is the sampling period). The dimension n of
vector x is the order of the dynamic model.

If the state vector is the vector of the n most recent outputs of
the model [ y(k) y(k − 1) · · · y(k − n+ 1) ]T, the model can be
written as

y(k + 1) = ˚(y(k), y(k − 1), . . . , y(k − n+ 1),u(k)) (4)

which is called the input–output form of a dynamic model. It
can be shown that state-space forms are sometimes more diffi-
cult to train but may be more general and more parsimonious
than input–output forms. Functions ϕ,  and the resulting ˚ are
computed by feed-forward neural networks. A state-space neural
network is shown pictorially in Fig. 1b.

The design of a static black-box model requires: (i) selecting the
relevant variables, whose influence on the output is larger than
the influence of noise, (ii) training models of increasing complex-
ity, (iii) selecting the model that generalizes best, i.e. provides the
most accurate predictions in situations that are not present in the
training set, (iv) estimating the performance of the selected model
on fresh data, which was used neither for training nor for model
selection.
Journal xxx (2008) xxx–xxx 3

ce recurrent neural network of order 2. z−1 is the conventional symbol for a unit

In the present investigation, variable selection was performed
with the random probe method, as described in [26].

Networks of increasing complexity were subsequently trained.
As mentioned above, the training of neural networks consists in
minimizing the least squares cost function (2). The gradient of the
cost function is first computed by an algorithm (specific to neural
networks) called “backpropagation” [18]; that gradient is provided
to a general-purpose optimization algorithm, which, in the present
study, was the Levenberg–Marquardt algorithm.

Model selection was performed by estimating the generalization
ability of the models trained as described, using the “leave-one-out
score” Ep:

Ep =

√√√√ n∑
k=1

[R(−k)
k

]
2

(5)

where R
(−k)
k

is the prediction error on the example k when the
latter has been withdrawn from the training set and the model
has been trained with all other examples. The leave-one-out score
Ep is known to be an unbiased estimate of the generalization
error of the model. Since the computation of the leave-one-out
score is computer-intensive, approximations of the leave-one-out
errors R(−k)

k
were computed by the “virtual leave-one-out” method,

described in [27].
In addition, a test set, made of examples that were used neither
h of activated carbon filters by pesticides in surface waters with static
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for training nor for model selection, was used for estimating the per-
formance of the model selected by the procedure described above.
The performance was estimated through the root mean square error
RMSET and determination coefficients R2

T between predicted and
observed responses on the test set:

RMSET =

√∑n

k=1(ykp − yk)
2

n
(6)

R2
T =

∑n

k=1(yk − ȳkp)
2∑n

k=1(ykp − ȳkp)
2

(7)

3. Materials and methods

3.1. Adsorbents

Five commercial activated carbons were selected for this study.
They were produced from different raw materials and provided
under different forms (pellets, extruded, fibres), yielding a large
range of pore characteristics, which are known to have an influence

dx.doi.org/10.1016/j.cej.2008.02.015
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Table 1
Main characteristics of activated carbon materials

Commercial name NC-60 Picabi

Manufacturer Pica Pica
Precursor Coconut Wood
Form Pellets Pellet
Particle diameter, dp (mm) 1.23 1.16

Specific surface area (m2 g−1) 1232 1575
Total pore volume (cm3 g−1) 0.590 0.992
Micropore volume (cm3 g−1) 0.513 0.625
Microporosity (vol.%) 87.0 63.1
Primary microporosity (%) 81.5 46.8
Secondary microporosity (%) 5.5 16.3
Median micropores width (Å) 5.97 6.82

Macropore volume (cm3 g−1) 0.242 1.069

on pesticide adsorption [28]. Prior to their use, AC were washed
with deionised water and dried at 100 ◦C overnight.

Their main properties are described in Table 1. Particle
diameters were measured from scanning electron microscopic
observations for fibres [29] and are mean diameters determined
by sifting of granules and extruded particles. Mercury porosimeter
Micromeritics Autopore IV 9500 allowed an assessment of particles
macroporosity.

Pore parameters were measured by nitrogen adsorption at
77.7 K with a Micromeritics ASAP 2010 apparatus. Micropore vol-
ume was assessed by the Howarth and Kawazoe theory [30]
whereas specific surface area was determined according to the
Brunauer–Emmett–Teller method [31]. The percentages of pri-
mary micropores (<0.8 nm) and secondary micropores (0.8–2 nm)
were also calculated. According to micropore percentage and
median micropore width, mesopore concentrations may be ranked
as: Picabiol > Norit Row 0.8 > Chemviron Cal 12-40 > Pica NC-
60 > WWP3.
Please cite this article in press as: C. Faur, et al., Modelling the breakthroug
and recurrent neural networks, Chem. Eng. J. (2008), doi:10.1016/j.cej.2008

3.2. Adsorbates

Three pesticides were used as the target adsorbates: atrazin
(A, M = 216 g mol−1, solubility S = 35 g L−1, Vm = 180 cm3 mol−1,
pKa = 1.68), atrazin-desethyl (ADE, M = 187 g mol−1, solu-
bility S = 3200 g L−1, Vm = 157 cm3 mol−1, pKa = 1.00) and
triflusulfuron-methyl (TFSM, M = 492 g mol−1, solubility
S = 43 g L−1, Vm = 339 cm3 mol−1, pKa = 4.40), all supplied by Riedel-
de Haën (France). Atrazin was selected because it was the most
frequent pesticide until its prohibition in 2001 in many European
countries [32], and its degradation by microorganisms is very slow
[33]. ADE, the most common atrazin metabolite, is phytotoxic-
like atrazin [34]. Finally, TFSM has been recommended by the
French regulation in force [35] to replace atrazin. Concerning the
surface water (Erdre river, France), its characteristics are given in
Table 2.

In the range of low concentrations (<1 mg L−1), all solutes were
analysed using a Waters 600 HPLC provided with a UV Waters 486
detector and a Novapack C18 non-polar column coupling with solid
phase extraction when the concentration is below 5 �g L−1. A Shi-

Table 2
Characteristics of the surface water

Surface water

T (◦C) 20–22
pH 7.8–8.2
Turbidity (NTU) 0.65–0.80
Conductivity (�S) 600–700
Abs254 nm 0.11–0.14
Oxidation KMnO4 (mg O2 L−1) 0.7–5.0
Dissolved organic carbon (mg L−1) 2.0–5.0
 PRESS
Journal xxx (2008) xxx–xxx

Cal 12-40 Row 0.8 WWP3

Chemviron Norit Actitex
Coal Peat RAYON
Pellets Extruded Fibers
1.04 0.92 0.01

1103 913 1148
0.646 0.647 0.608
0.466 0.388 0.467
72.2 59.9 76.8
59.8 54.6 36.6
12.4 5.3 40.2
5.83 5.52 5.45

0.646 0.375 0.287

madzu UV 1601 spectrophotometer was used in the range of high
concentrations (>1 mg L−1).

3.3. Adsorption data collection

Isotherm experiments were performed at 20 ± 1 ◦C in static
reactors to get equilibrium parameters for synthetic and natural
waters. Two hundred and fifty milliliters of distilled or natural
water containing an initial concentration of pesticide ranging from
0.005 to 22 mg L−1 were stirred with a given weight (20 mg) of
active carbon at 300 rpm for 48 h, previous works having demon-
strated that this time enables to reach adsorption equilibrium [36].
pH ranged from 5.5 to 5.6 for synthetic waters and from 7.8 to 8.2
for natural waters.

The dynamic adsorption onto activated carbon was performed
at 20 ± 1 ◦C in water-jacketed glass XK 26/20 columns from Amer-
sham Biosciences Company (France), with an inside diameter of
2.5 cm and a length of 10 cm. A Masterflex peristaltic pump enables
natural water (Erdre water, Nantes) containing a pesticide to flow
through an activated carbon bed with a velocity u0 ranging from 5 to
20 m h−1. Each column was loaded randomly with 10 g of activated
carbon. At each column output, sampling is performed as a function
of time t to determine breakthrough curves. The value of the initial
concentration C0 was 1 or 15 mg L−1, for a sampling period of 2 h.

4. Results and discussion

4.1. Modelling competitive adsorption of pesticide and NOM onto
activated carbon in a static reactor
h of activated carbon filters by pesticides in surface waters with static
.02.015

Monocomponent adsorption of ADE in synthetic water is pre-
sented in Fig. 2. The equilibrium of pesticides onto activated carbon
in synthetic waters was modelled by the Freundlich equation [37]:

q1 = K1c
1/n1
1 (8)

where K1 [(mg g−1)(L mg−1)1/n] and 1/n1 are Freundlich constants
that depend on temperature and on the given adsorbent–adsorbate
couple and q1 and c1 are equilibrium adsorption capacity of pesti-
cide on active carbon (mg g−1) and equilibrium concentration of
pesticide in synthetic water (mg L−1), respectively. Parameters K1
and 1/n1 are given in Table 3 for the three pesticides and the five
active carbons.

The comparison of adsorption isotherm curves and Freundlich
parameters shows, for low molecular weight pesticides A and ADE,
a preferential adsorption of active carbons which combine a high
micropore volume with a narrow pore size distribution (NC-60,
WWP3). The low molecular diameter of these pesticides allows
them to penetrate into the micropore network of active carbons. For
TFSM which presents higher molecular weight and volume, active
carbons with a larger mesopore content lead to higher adsorption

dx.doi.org/10.1016/j.cej.2008.02.015
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Table 3
Summary of external Freundlich parameters (Ki and 1/ni) for pesticide (i = 1) and NOM (i = 2)

Parameter Adsorbate(s) Activated carbon

NC-60 Picabiol Cal 12-40 Row 0.8 WWP3

Freundlich parameters of pesticides in monocomponent solution

K1

((mg g−1)(L mg−1)1/n)

A 38.4 22.6 28.7 21.4 27.3
ADE 26.4 23.1 16.5 21.3 5.2
TFSM 8.7 19.7 32.1 18.5 8.6

1/n1

A 0.454 0.587 0.642 0.563 0.489
ADE 0.811 0.729 0.911 0.747 0.523
TFSM 0.511 0.529 0.732 0.669 0.339

R2

A 0.950 0.970 0.940 0.950 0.990
ADE 0.960 0.990 0.970 0.930 0.950
TFSM 0.950 0.970 0.930 0.960 0.960

0.0
0.01
0.0

1.10
1.0

119.9

0.0
0.0
0.0
Initial concentration of NOM

C0,2

(mg L−1)

A 0.034
ADE 0.023
TFSM 0.058

Freundlich parameters of NOM in presence of a pesticide (EBC model)

K2

((mg g−1)(L mg−1)1/n)

A + NOM 279.3
ADE + NOM 1.11
TFSM + NOM 117.7

1/n2

A + NOM 0.0090
ADE + NOM 0.0036
TFSM + NOM 0.0098
Please cite this article in press as: C. Faur, et al., Modelling the breakthroug
and recurrent neural networks, Chem. Eng. J. (2008), doi:10.1016/j.cej.2008

Statistical parameters of EBC model

 

A + NOM 0.0008 0.0
ADE + NOM 0.0018 0.0
TFSM + NOM 0.0026 0.0

E
(%)

A + NOM 1.15 1.0
ADE + NOM 1.73 2.0
TFSM + NOM 2.08 2.0

Determination coefficient (R2), difference ( ) and relative error (E) between observed and

capacities as demonstrated by higher values of K1 parameters with
Picabiol or Cal 12-40.

In the case of competitive adsorption between pesticides and
natural organic matter (NOM), NOM is ranked as one compound,
called equivalent background compound (EBC), according to the
Crittenden approach [38] modified by Najm [39]. The EBC model can
be used to obtain the adsorption isotherm of competing compound
when the adsorption of the target compound (pesticide) is known
in the presence and absence of NOM. The model enables to deter-
mine the EBC adsorption parameters (Freundlich K2 and 1/n2 and
initial EBC concentration C0,2). Applying the ideal adsorbed solution

Fig. 2. Monocomponent adsorption isotherms of ADE onto activated carbons.
V = 250 mL, AC weight = 20 mg, C0 = 0.005–22 mg L−1, T = 20 ± 1 ◦C, stirring = 300 rpm
for 48 h.
30 0.064 0.041 0.107
2 0.054 0.039 0.070

47 0.038 0.041 0.087

2.54 1.08 132.6
4 1.87 2.09 1.35

1.47 106.9 111.2

044 0.0063 0.0026 0.0026
043 0.0028 0.0060 0.0031
072 0.0030 0.0086 0.0070

006 0.0008 0.0330 0.0002
025 0.0004 0.0009 0.0005
026 0.0009 0.0027 0.0611

0 1.15 7.42 0.58
4 0.82 1.22 0.91
8 1.22 2.12 10.09

calculated points (Ci , qi) of the isotherm curve.

theory, see [2] to the binary system (pesticide 1/NOM 2) gives:

C1,0 − m

V
q1 −

(
q1

q1 + q2

)[
n1q1 + n2q2

n1K1

]n1
= 0

C2,0 − m

V
q2 −

(
q2

q1 + q2

)[
n1q1 + n2q2

n2K2

]n2
= 0

(9)

where C1,0 and C2,0 are the initial concentrations (mg L−1) of pes-
ticide and NOM, respectively, m the mass of activated carbon
introduced in the batch reactor (g), V the volume of solution (L), q1
h of activated carbon filters by pesticides in surface waters with static
.02.015

and q2 is the adsorption capacity (mg g−1) of pesticide and NOM,
respectively. The single solute isotherm for pesticide is described
by the Freundlich equation (with parameters K1, n1) applied to the
adsorption isotherm of pesticide in synthetic water.

Adsorption isotherms of pesticide in natural water enable to
estimate the equilibrium adsorption capacities and concentrations
of pesticide (C1 and q1). The initial concentrations of pesticides are
then obtained from a mass balance onto the target compound:

C1,0 = C1 + m

V
q1 (10)

This system has four unknown parameters: Freundlich parame-
ters of NOM (K2, n2) and initial concentration of NOM (C2,0) we want
to determine and adsorption capacity of NOM in binary solution
(q2).

The parameters (C1, q1 and q2) are determined for three exper-
imental points and the parameters (C2,0, K2 and n2) are thus
determined by solving the system of six equations, these param-
eters being calculated so as to minimize the difference  between
experimental points and computed points of the isotherm curve

dx.doi.org/10.1016/j.cej.2008.02.015
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Fig. 3. Modelling of the adsorption isotherm of atrazin onto activated carbon WWP3
in the presence of NOM. V = 250 mL, AC weight = 20 mg, C0 atrazin = 0.005–22 mg L−1,
T = 20 ± 1 ◦C, stirring = 300 rpm for 48 h.

[40]:

 =
3∑
i=1

(
q1,mod − q1,exp

q1,mod

)2

+
3∑
i=1

(
C1,mod − C1,exp

C1,mod

)2

(11)

From  values, the relative error between experimental and
modelled data may be calculated from the following equation
where N is the number of experimental data [40]:

E =
√

 

2N
(12)

This solving method is presented in details by [39]. Solving
was performed with Matlab Simulink software. Fig. 3 illustrates
modelling of DEA adsorption on Picabiol activated carbon in the
presence of NOM by the EBC model. Values of EBC initial concentra-
tion C0,2, and K2 and 1/n2 Freundlich parameters are given in Table 3.
In all cases, the  parameter was lower than 0.061 correspond-
ing to a relative error E lower than 10%. Initial EBC concentrations
C0,2 (mg L−1) are close to values obtained by [41] with the com-
petitive adsorption of NOM and 2-methylisoborneol in different
waters. These values are lower than initial DOC measured for sur-
face waters, because the EBC is not considered to be the entire NOM
Please cite this article in press as: C. Faur, et al., Modelling the breakthroug
and recurrent neural networks, Chem. Eng. J. (2008), doi:10.1016/j.cej.2008

present in natural waters as only an unknown portion of the NOM
will compete with pesticides [42]. K2 values vary in a large range,
from 1.04 to 279.3 (mg g−1)(L mg−1)1/n, but are in agreement with
values obtained by [40,43] for the adsorption of synthetic organic
compounds in the presence of NOM. Low 1/n2 values are in agree-
ment with a favorable adsorption of NOM.

4.2. Variable selection and data pre-processing for NN models

A large number of factors may have an influence on the sat-
uration of activated carbon filters, such as the adsorbent pore
properties, operating conditions, adsorbate properties or variables
related to the presence of natural organic matter. From a literature
survey, 15 candidate variables were thus identified as potentially
influential for the dynamic adsorption of pesticides from surface
water: primary micropore volume Vmicroprim, secondary micropore
volume Vmicrosec, median micropore width ∅med �pores, mesopore
volume Vmeso, particle diameter dp, molecular weight M, solubil-
ity S, inlet concentration C0, flow velocity u0, initial concentration
of natural organic matter in terms of total organic carbon TOC0, Fre-
undlich parameters of pesticides (K1 and 1/n1) and natural organic
 PRESS
Journal xxx (2008) xxx–xxx

matter (K2 and 1/n2). Recurrent neural nets have an additional can-
didate variable, namely, the value of (C/C0) predicted by the model
at the previous time step (C/C0)(k−1)T. The fact that the only previ-
ous value of (C/C0) present in the candidate variables is (C/C0)(k−1)T
reflects the underlying assumption that the recurrent model should
be of order 1; that is justified by the fact that knowledge-based
models used to describe dynamic adsorption are first order with
respect to time [2].

Therefore, the variables of both feed-forward and recurrent
neural networks were selected among those 16 parameters by a
statistical method, the random probe method [27], in two steps. (1)
First, the variables are ranked in order of decreasing relevance by
Gram-Schmidt orthogonalization. (2) The second step consists in
computing the rank below which variables should be discarded, by
generating a “probe” variable (i.e. a random variable that is unre-
lated to the quantity to be modelled) and ranking it like other
candidate variables as described above. The candidate variables
that are ranked below the probe variable should be discarded. For
the feed-forward neural network, two candidate variables were
rejected (with a 10% risk of false positive, i.e. of keeping a variable
although it is irrelevant): Vmicrosec and ∅med �pores. For the recurrent
model and the same risk level, only eight most influential variables
were selected: (C/C0)(k−1)T > K2 > S > 1/n1 > Vmicrosec > M > TOC0 > C0.

The data set featured 9749 values related to the 5 AC and the 3
pesticides with different operating conditions. All data were nor-
malized to have zero mean and standard deviation equal to 1; the
experimental breakthrough curves were discretized with the same
time step (100 min).

4.3. Model design and network training

The design of the neural network models was performed using
the NeuroOneTM v.5 software (Netral S.A., France). For the feed-
forward neural network, the 9749 measurements were randomly
divided into a training database of 6499 values for training and
model selection, and a test database of 3250 values for the final
assessment of the generalization performance of the model. In the
case of the recurrent networks, the sequential nature of the data is
fundamental and must be preserved in the training and test sets;
therefore, the breakthrough curves were randomly partitioned into
20 breakthrough curves for training and 10 for testing, resulting in
a training database of 6452 values while the test database con-
tained 3297 measurements. In the latter case, data are organized
in sequences, each sequence corresponding to one experimental
breakthrough curve. The number of epochs was equal to 100.
h of activated carbon filters by pesticides in surface waters with static
.02.015

Because the state-space form did not provide any improvement
upon the input–output form, the latter was selected; training was
performed under the output-noise assumption, so that a semi-
directed algorithm was used: during training, the value of the state
input was the value predicted by the model at the previous time step.

The central problem in black-box model design is known as the
bias-variance dilemma [44]: a model with too few parameters is
unable to learn the training data, whereas a model with too many
parameters learns both the data and the noise, hence generalizes
poorly. The goal of black-box model design is to find a model for
which the estimate of the root mean square generalization error
is on the order of the standard deviation of the noise present in
the training data. To that effect, models of increasing complex-
ity (i.e. increasing number of hidden neurons) were trained, and
the virtual leave-one-out score Ep of each model was computed.
The root mean square error on the training set (RMSEtr) was also
computed; those quantities are reported in Table 4. As expected
for the recurrent model, the leave-one-out score decreases as the
number of hidden neurons increases and starts increasing when
the number of parameters is large enough for over-fitting to occur
(number of hidden neurons > 2). This is in contrast to the behaviour

dx.doi.org/10.1016/j.cej.2008.02.015
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Table 4
Optimization of the number of hidden neurons for the neural networks

Number of hidden
neurons

Recurrent model Feed-forward model

RMSEtr Ep RMSEtr Ep

1 0.0037 0.086 0.0045 0.095
2 0.0019 0.064 0.0014 0.052
3 0.0001 0.003 0.0008 0.041
4 0.0001 0.002 0.0005 0.032
5 0.0001 0.001 0.0005 0.031
6 0.0001 0.002 0.0004 0.025
Please cite this article in press as: C. Faur, et al., Modelling the breakthroug
and recurrent neural networks, Chem. Eng. J. (2008), doi:10.1016/j.cej.2008

7 0.0001 0.003 0.0003 0.024
8 0.0001 0.003 0.0002 0.022
9 0.0001 0.004 0.0002 0.021

Ep: leave-one-out score (see Eq. (5)); RMSEtr: root mean squared error on the training
set.

of the RMSEtr on the training set, which decreases as the number
of hidden neurons increases. For the feed-forward model (see also
Table 4), the generalization error Ep does not increase significantly
with the number of hidden neurons, in the investigated range. In
order to minimize the number of parameters, six hidden neurons
were selected for the static model. The final optimized architec-
tures of both NN are shown in Fig. 4, corresponding to 31 and 91
parameters for the recurrent and static models, respectively.

4.4. Generalization performance of the black-box models

Fig. 5 shows the prediction of the breakthrough curve of TFSM on
Picabiol by the feed-forward neural network and the recurrent neu-
ral network. The agreement between experimental and predicted
data for this particular experiment is typical of the results obtained

Fig. 4. Optimized architectures of the (a) feed-forward and (b) recurrent neural
network. The recurrent network is a first-order model in input–output form.
Fig. 5. Prediction of a breakthrough curve by the feed-forward and the feedback
NN, for the breakthrough of TFSM in a surface water onto Picabiol (C0 = 1 mg L−1,
u0 = 20 m h−1).

for all breakthrough curves. RMSET and R2
T for the feed-forward

neural network were computed using the same observations as
those randomly selected for inclusion into the test database of
the recurrent neural network. For all breakthrough curves of the
test database, observed values as a function of predicted ones are
shown in Fig. 6 for static and recurrent neural networks. Com-
h of activated carbon filters by pesticides in surface waters with static
.02.015

putations were performed for specific zones of the breakthrough
curves (Table 5): breakthrough zone (C/C0 < 0.10), saturation zone
(C/C0 > 0.9), and the global breakthrough curve (0 < C/C0 < 1).

Neural networks provide quite satisfactory predictions for pesti-
cide dynamic adsorption onto activated carbon from a global point
of view: R2 is larger than 0.981 while RMSE is lower than 0.035.
However, the recurrent NN generalizes better than the static one,
especially for the breakthrough and the saturation zones, despite a
lower number of parameters (31 for the recurrent NN and 91 for the
feed-forward NN). That is not unexpected, since the dynamic char-
acter of the process is taken into account in the recurrent model
only.

In all cases, operating conditions and pesticide properties seem
to have a great influence on the pesticide adsorption in natural
water because these parameters are selected as relevant variables of
both neural networks, while adsorbent characteristics have a lower
impact, except the porous distributions of active carbons, especially
secondary micropore proportions, which is found to be relevant for
the predictions made by both networks. It confirms the influence
of secondary micropores on the direct competition phenomenon
between pesticides and natural organic matter. However, the meso-

Fig. 6. Parity diagram for all the breakthrough curves of the test database.

dx.doi.org/10.1016/j.cej.2008.02.015
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Table 5
Performances of both models (recurrent and feed-forward neural networks) to pred

Model 0 < C/C0 < 0.1 0.1 < C/C0 < 0.9

RMSET R2 RMSET

Recurrent 0.007 0.995 0.013
Feed-forward 0.029 0.538 0.034

porous volume which, contributes to reduce the pore blockage
effect, is only identified as a relevant variable in the feed-forward
NN.

5. Conclusion

In the present paper, the feasibility of the prediction of the break-
through of activated carbon filters was investigated with black-box
models.

In a first part, adsorption isotherms of pesticides were per-
formed in a static reactor for synthetic and natural waters.
Modelling of experimental curves by the equivalent background
compound model enabled to assess design parameters related to
the competitive adsorption of pesticides with natural organic mat-
ter.

In a second part, these quantities were variables of static and
recurrent neural networks designed to model breakthrough curves
of the same pesticides in a natural water. Variables related to adsor-
bents properties and operating conditions were also taken into
account as influential factors. Comparison of modelling abilities of
both models for specific parts of the section curves shows that both
NN provide a satisfactory modelling of the global breakthrough
curves. For the breakthrough zone specifically (0 < C/C0 < 0.1), the
dynamic character of the process leads to higher performance of
the recurrent model despite a lower number of parameters.

Recurrent neural networks are now to be applied to the pre-
diction of breakthrough of activated carbon filters used to treat
natural waters containing pesticides in a case of pilot unit located
in an industrial site. Variables related to the activated carbon fil-
ter (height or volume for example) and the contact time may thus
be included in the candidate variables, in order to account for the
competition effects that may happen with pesticides.
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