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Abstract—This paper deals with the approximation of both a function and its derivative by feedforward neural
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1. INTRODUCTION

[t is well known that feedforward neural networks
are “universal approximators.” It is proved in Cy-
benko. (1989) and in Funahashi (1989), that any con-
tinuous function can be approximated on a compact
set with the uniform topology, by a layered network
with one hidden layer. Hornik, Stinchcombe, and
White (1989), have shown that any measurable func-
tion can be approached with such a network. Fur-
thermore. these authors proved, in Hornik,
Stinchcombe, and White (1990), that the functions
of the Sobolev's spaces can be approached with all
their derivatives. Yet, these results only give theo-
rems about the existence of an approximation. The
goal of this paper is to show that there exist explicit
approximation formulas, from which it is possible to
build the network from examples.

When one tries to approach a continuous function
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with a neural network, the usual method consists in
taking a set of values (often called “examples™) of
the function. and minimizing an error function on
these points, using the so called “Gradient Back
Propagation™ algorithm (Rumelhart, Hinton, & Wil-
liams, 1986). The main drawback of this algorithm
is the large number of iterations it needs to converge.
One can also say that one never knows whether it
will converge, and whether it will converge to a func-
tion having the desired properties (problem of local
minima).

Futhermore, the functions obtained only make an
interpolation of the patterns, and one never knows,
even if the number of patterns increases to infinity,
if these functions will converge to the initial function
for a given norm. It is well known, for instance (the
Runge phenomenon, see Dieudonné, 1980), that
there exist analytic functions for which interpolation
with polynomials does not converge.

In this paper we show that it is possible, when
some values of the function are known, to obtain an
approximation of this function by a feedforward
neural network whose weights are explicitly given
instead of an interpolation. This formula is noise
resistant and can be generalized to the approximation
of both a function and its derivative. We see that this
kind of approximation is necessary in control theory:
we develop the case of a function defined implicitly
(for example a command determined by a process),
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FIGURE 1. illustration of the interpolation algorithm. For each new input, a neuron is added which does not change the outputs
of the previous points, and makes the correct output for this input.

3. THE BELL-SHAPED FUNCTIONS:
DEFINITION AND MAIN PROPERTIES

3.1. Definition and Examples

We will now introduce a function family (the bell-
shaped functions). the linear combinations of which
can make an approximation from examples of any
continuous function.

DEFINITION. A function b:R — R is said to be bell-
shaped if b belongs to L' and its integral is nonzero,
if it is nondecreasing on (—=, a) and nonincreasing
on [a. + =), where a belongs to R. In particular b(x)
is a non-negative number and the number a is a global
maximum for b. it is the center of the bell-shaped
function. A bell-shaped function is said to be centered
if its center is zero.

Examples (see Figure 2).

1. Piecewise constant functions. The most elemen-
tary- bell-shaped function is the characteristic
function of [ -1, 1]. It will give an approximation
by piecewise constant functions.

[t can be easily obtained from the Heaviside
function H. where H(x) is equal to 1 if x is non-
negative and 0 otherwise: just consider the expres-
sion:

H(x + 1) + H(1 — x)
2

5

The bell-shaped functions Gauss algebra. Let us
call b,, the following class of bell-shaped func-
tions:

¢ — exp (x —ay
) b p

where x. a. and d belong to R.

The bell-shaped functions Gauss algebra is the set
of functions:

; Cy* bdkdk‘

where

Z jCkg < %,

k

[t contains in particular the functions from the
Schwartz's class (Meyer, 1990).

. Bell-shaped and spline functions. If we consider

the following kind of bell-shaped functions:

Oon (==, —1]and on [1, +=x)
(I = x)*on[-1,1]

we will obtain, in using Theorem 2, the approx-
imation by spline functions. We notice that those
functions are C**~ !,

. Relation with squashing functions. The most in-

teresting property of the bell-shaped functions for
neural networks is that the primitive of a bell-
shaped function is a squashing function. For ex-
ample the derivative of the hyperbolic tangent is
bell-shaped. C*, even and centered. This property
will be used when we will study the possibility of
approximating both a function and its derivative.

Given a squashing function the derivative of
which is even, centered, and bell-shaped, and a
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x7is within a distance + of £. The proof of this
property is the same as the one given above.

3. Assumption on the bounds of the sum in for-
mula*). In Theorem 2, we made the sum be-
tween the integers —n° and n°. It is obvious that
if we sum between —a, and b,, where a, and b,
are nondecreasing sequences of integers, the con-
vergence of f,(x) to f(x) is uniform on the com-
pact sets of the interval (~lim inf a,/n, lim inf
b,/n). In particular, if the support of the functon
fisin this interval. the above sequence converges
to f uniformly on this interval.

4. Robustness with respect to noise. The formula (*)
is still valid if the patterns f(£) are altered with
noise. This will be proved in Section 4.

. Case of higher dimension. If we have the “prod-
uct”’ neuron in the network, we can have, for free.
the following generalization in higher dimensions:

Let f:R?P — R, be a continuous and bounded
function. The functions

(W)

n” n

ﬁx(.r)%’Z,-A >

ky= -n” ky= -t

[.nee

et
ol b

converge uniformly on compacta to f(x). The
general case will be treated in Section 5.

4. ROBUSTNESS WITH RESPECT
TO NOISE

The redundancy is one of the most important ad-
vantages of neural networks. Each information is
shared out by many connections. This particularity
gives a good immunity to noise, that we describe and
explain in this section.

4.1. The General Case

We will now consider the case where the values
f(%) are not known exactly, that is the measures pro-
vide in fact (1 + a,) - f(%) + bi,, where a; , et
by . are noises. We will always make the following
assumptions: the noises are independent and have
zero mean.

THEOREM 3. Let (2, A, P) be a probability space.
If f:R — R is a continuous bounded function, and if
a, , and by, are random variables which are inde-

21l
pendent, in L* (Q. A, P). with zero mean and
bounded variances in the aggregate. then the sequence

(1= ar[5) + b,

flo = Y

1.n°
Fa—

) (n"’“ (/x — S)) where [ = I

J oo

b(ry dr

and 0 < a < 1. converges to f(x) in L' (. A. P).
uniformly on compacta with respect (o x.

In other words, for any compact set K. there exists
a sequence ¢, tending to zero positively such that,
for all x in K, the expected error is bounded by ¢,:

E([f(x) = floF) = ¢,

Notes.

(a) In fact. we have also the following property:
f2(x) converges almost surely to f(x) because
the sum of the variances is finite (Feller. 1968).

(b) We can notice that the nearest to 1 is the param-
eter o, the most robust is the network with re-
spect to noise. In that case. because the bell-
shaped functions are flattened. we lose in pre-
cision what we get in robustness.

4.2. The Cases of Gaussian Noises

We will now consider the case of gaussian noises with
zero means. This particular case is in fact a standard
assumption, and we can say a little more than in the
general part above. With the same notation as in
Theorem 3:

THEOREM 4. If for all n, the noises (e, )« are inde-
pendent gaussian random variables, with zero means
and bounded variances in the aggregate, then the se-

quence
k\
22 f(n) + €x.n , . k

e £ )

P [.n*
converges almost surely to f(x), uniformly on com-
pacta with respect to x.

In other words, for a compact set K, the proba-
bility for the sequence f, to converge to the function
f uniformly on the variable x € K, is equal to one.

5. CASE OF HIGHER DIMENSION

We have already given a theorem in any dimension,
in the case where the network contains "“product”
neurons. Unfortunately, classical neural networks do
not have any ‘‘product” neuron. This is the reason
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THEOREM 6. Let fbe in C', with a bounded derivative,
and S be a squashing function verifying S(0) = 0 and
having a bell-shaped derivative. Then we can ap-
proach f. uniformly on compacta. with the functions:

-

= —n- . N 5 v

Furthermore. the functions f,(x) converge uniformly
on compacta to f'(x).

6.2. Case of Dimension Greater than 1

To approach a function of several variables and its
first derivatives, we must face new difficulties: (a) If
we try to approximate only d/9.x* F(x) we stand no
chance, even in 2-dimension, to approach the other
derivatives. Therefore, we must try to have all de-
rivatives at the same time. The only way to do this
seems to approach ¢#/dx' . . . 9x? F(x). and to in-
tegrate after. With this solution, we have to face
another problem: (b) How can we build. with squash-
ing functions. some function G such that ¢?/dx' . . .
dx? G(x) is a multidimensionnal bell-shaped func-
tion? If the network has a ZII-units. the functions:
(x'.. .. x?)—=S(x") . .. S(x?)where Sis a primitive
of a bell-shaped function. are solutions to this prob-
lem. The following Theorem 6 bis will then give an
explicit I-network. We have no answer in the gen-
eral case. for 2-networks. Let us just recall that in
the section above, we have done a similar construc-
tion in 2-dimension:

G: (x,y)— th(th(x) + th(y) — 0.5)

which is also a solution to this problem (see example
3, Section 5). The Theorem 6 bis gives an explicit X-
network in 2-dimension. Yet, this construction is dif-
ficult to generalize in further dimensions: (¢) Any-
way. we have a result concerning the existence of an
approximation with a one layer feedforward X-net-
work in any dimension. Indeed let f be a function in
C'. We can approach f with a C* function with a
compact support g, for the topology of uniform con-
vergence on compacta for the function and its deriv-
ative. Trigonometric polynomials are dense in the
space of continuous functions for the norm of uni-
form convergence on compacta, and then can ap-
proach the function d°/dx! ... dxP g(x). After
integration, we obtain a sequence of trigonometric
polynomials (which can be written as a sum of cosines
of linear combinations in x!', ..., x?) which con-
verges to g and whose gradient converges to the gra-
dient of g. Therefore, we can approach the function
f by linear combination of cosines for the same to-
pology. According to Theorem 6, we can approxi-
mate the cosine function and its derivative with a one

layer feedforward neural networks. The approxi-
mation of the function f and its gradient then follows.

Anyway. when the problem of finding an appro-
priate function G has been solved (as in 2-dimen-
sion), we have an explicit formula of approximation.
We give it in 2-dimension. the case of higher dimen-
sion being generalized easily.

THEOREM 6 bis. Let fand G:R*— R be in C*. such
that the derivative 9-/dxoy G(x. v) is a multidimen-
sionnal bell-shaped function, and let $:R — R. be
such that its derivative is bell-shaped. Then the func-
tions

flxov)y = f(0,0) +

5 malr(E.H

LS o Inroxey \n o on

klkm= -nn

cofoo-Seo-)

S0 [ ( k‘) ( [k
v 0, = l-a , . -
" e l'n [Mf \ ) S’ln (V ﬂ>)

o [k
-5 (50)s

where [ and I' are, respectively the integrals of -/
dxdy G(x, y) and S', converge uniformly on com-
pacta to f, just as their differential to the differential

of f.

6.3. Formulas for Back Propagation of the Error
on the Derivatives

For a function with more than 2 variables, we proved
the existence of a network with no X[ units that
approximates the function with its gradient. But we
do not have explicit formulas to build the network.
We suggest to use the back propagation algorithm
that we extend here to take into account the error
on the derivatives. Yet, the drawback of back prop-
agation then remains: there is no topology such that
the network is proved to converge to the initial func-
tion as the number of examples increases.

We consider a feedforward neural network with
n layers, which takes as input a vector (x!). Let us
denote V¥ and x; the potential and the state of neu-
ron j from layer &, having activation function $().
We also denote y% the partial derivative of the state
x* with respect to the g'th input x}:

The direct propagation is done according to the rule:

Vful — z Wk xk
1

e

6= S
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FIGURE 3. The first step to approach a function ¢ such that f(x, &(x)) = 0 with a neural network is to build N,, an approximation

of f.

distributed. and if N.(x,. N,(x,)) is close to zero
for all p. then the network N, is a good approxi-
mation of ¢ (Theorem 10). The boundness of N,
can be obtained if, in the learning phase, the
weights of this network are kept within a given
limit. This can be done with the cost function used
for back propagation for instance.

7.2. The Case of a Single Approximation of the
Function f

We will show here why it is necessary to force the
network N, to approach both f and its derivative.

In this section. K, will be a cartesian product of
n segments from R, K, a product of p segments from
R. K the interior of KV, K=K, x K,and f(x, y)
a C' function defined on the compact set K, to RP,
such that. for all (x, y) in K, the differential of f with
respect to y. df/dy (x, y), is regular. It is also sup-
posed that. for all x in K. there exists one and only
one y in K/ such that f(x, y} = 0. One then has the
function

o K, — K*
x — v such that f(x, y) = 0.

According to the implicit functions theorem. ¢ is C!
in K. and its differential with respect to x is

% (x) = - B—fj(x. cb(X))] C’)—f-(xv ¢(x)).
y dx

But the condition

INAx,y) = flx,y)<e

does not ensure the network N; to fullfill the regu-
larity conditions needed by the implicit functions
theorem. If the derivative of N, with respect to y is
not regular, it does not hold, and a C' function ¥(x)
verifying

Ni(x. ¥(x)) =

may not exist. Typically. a “catastrophic™ phenom-
enon can happen, as shown in Figure 3

7.3. Theorems

We will now see that the problem can be solved if
both fand its derivatives are approached. The proofs
of the theorems are given in the appendix. Let us
first introduce some notations.

Notations. We denote by C'(K) the space of the C!
functions from K to RP, with the norm

’ of

Let (2 be the subset of C'(K) containing the functions
f such that. first, for all (x, y) in K. /3y (x. y) is
regular, and second, for all x in K|, the equation f(x
v) = 0 has one and only one solution in K. At Iast
CY(K,) is the space of the C' functions from K, to
RP. Its norm is the infinite norm.

The properties of the set () imply that there exists
an application

f

1P
Ifl, = Sup{iif e 3

x

Y0 — C(K,)
f—=W(f) =

We can then give the four following theorems:

¢ such that f(x, ¢(x)) = 0on K..

THEOREM 7. The set (0 of the C' functions f on K
such that

forall (x.y)in K, %C (x,y) is regular

for all x in K, the equation f(x, v) =

has one and only one solution in K*

is an opened subset of C'(K)

e

Desired

Nf —&> <@~ output

0

FIGURE 4. The second step to approach a function ¢ such that f(x, &(x)) = 0 with a neural network. Back propagation is
used, with zero desired output, but the weights of N, are those found in the first step and are not modified. Only the N,’s one

are updated.
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In practice. .V, is learnt by back propagation (see
Figure 4). At the end of the algorithm. the real num-
bers Ni(x,. N,(x,)) are small for all p. If the points
x, are sufficiently close to each other and sufficiently
distributed, we can conclude that IN, — W(f)l. is
small.

For Theorem 10. we could not provide a relation
giving the real number » from ¢, which would be
interesting in practice. it can be seen in the proof of
this theorem that » depends on ¢. and on the real
numbers A and x from Lemmas | and 3. Whether
these numbers A and x can be evaluated from the
network N, is an opened question.

8. CONCLUSION

We tried. in this paper, to give results as constructive
as possible. Thus. we raised and explicited the prop-
erties that are expected from neural networks: pos-
sibility of interpolation and of approximation, noise
robustness derived from the information redundancy
and. of course. parallelism.

We have continued the works of Cybenko. (1989);
of Funahashi, (1989): and of Hornik et al., (1989,
1990) about function approximations in giving ex-
plicit formulas and in proving that neural networks
can approach both a function and its differential.
Particular functions, the bell-shaped functions, have
a crucial importance in this paper. We believe that
many of the neural network’s properties are due to
those of the bell-shaped functions.

In giving approximation’s formulas, we also tried
to highlight the network’s architecture problem: the
number of hidden units which, we have seen, deter-
mines how well the function will be approximated.
and the organization in the network (for example,
use of 3 neurons cellulas to build bell-shaped func-
tions, or more complex cellulas with 2II units, to
approximate a function and its derivatives).

We have developed an important application,
showing how to approach an implicit function. In
that purpose, we mixed classical algorithms (gradient
back propagation for instance), and new methods
described in this paper.

Yet, some problems are still opened: we have seen
how difficult it is to approximate both a function and
its derivatives when there are more than one vari-
able. This is mainly because it is necessary to ap-
proach the p-th derivative with respect to the p
variables; it would be useful to avoid this. We have
no explicit approximation for a function and its de-
rivatives by ¥ networks with more than two vari-
ables. That is why we gave an extension of the back
propagation algorithm, to take into account the de-
rivatives of the network’s approximation. At least,
examples of the function’s derivatives may be im-
possible to have. In this case, the ideas presented in
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this paper may still be used to impose regularity con-
ditions on the approximation.

To conclude, we want to emphasize the similarities
between the theories described here and the signal
processing. On one hand it is quite easy to build bell-
shaped functions b( x ) such that the value of the sum.
for k in Z. of the translated functions b(x — k). is
L. It should then be possible to find formulas to de-
compose a given function as a sum of such bell-
shaped functions. This would be similar to the Y.
Mever's multiresolution analysis (see. for instance.
Mallat. 1989).

On the other hand. the approximation of a func-
tion with its derivatives should be helpful for rec-
ognition and classification of dynamical systems. For
instance, asystem'’s stabilizer could be searched (that
is. a function which stays constant if and only if the
received signal is a solution of the system’s dynamical
equation). and could be approximated.
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APPENDIX

Proof of Theorem 1. According to Heine theorem, the function
f is uniformly continuous on [a, b]. Let ¢ > 0 be a real number
and 7 be the coefficient of uniform continuity on [a, b]. We prove
that if

Sup |xr, = X1 <7
.
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To prove the Theorems 7 o 1U. we need the following three
lemmas:

LEMMA L If fis a function in (), there exists a real number A >
0 such that, for all (x.v) in K and for all h in RP,

ﬂ ’f

»r'y

I
(e x)h| > A jh
Proof. We denote by £ the unit sphere in R?. and we consider
the function
K.« K xS—=R
af
foeyoh)y — = (x. vk
ay i

which is continuous on the compact set K,.xK, xX. Since it is strictly
positive on its domain. it is inferiorly bounded by a strictly positive
real number A. a8

LestMa 20 Ler fbe in (L and A be a real number given by Lemma

L. There exists a real number « > 0 such that. for all (x. v)in K
and for all h in RPverifving

hi = aandy + hisin K.,
one has the inequality

fleoy = hy = fleov)i =

Proof. This inequality tollows easily from the triangular inequal-
itv. from (1)

‘Wr v ) = flxoy)

: - (1)
] ay

and from the fact that
o l
fii’z (x. y)h] = A Al
LAy

To prove (1). let us consider x. v. & and the function
0.1 — RP

[ flx, v + th) = flx,y) — 8_}; (x,v) - (th).

Applving the fundamental theorem of calculus to this function.
we get

I af
Hflecy = hA) = flx.v) = — (x. v)h
I ay
I 5 i
< 'h Sup{iitﬂ(xv*[h ——(x»[r }
Lilady

Since 4f/dy is uniformly continuous on the compact set K, one
can get a real number a > 0 such that. for (A = «, one has

(0. 1]} < %

LeMMA 3. For fin Q. and « given by Lemma 2
w1 > U such that any (x. y) verifving

Iy = ¥ =

Haf af
Sup{@i%’;(.uy + th) — %(x‘y) JLE

[nequality (1) just follows.

. there exists a

verifies also
e vl =

Proof. This lemma results from the fact that the set K' of the
points {x. v) in K such that

Iy = () = a2

is compact and that || f(x. ¥)i| is nonzero on K. ]

Proofof Theorem 7. Let fbe in Q. A, a, and x be the real numbers
given by the 3 lemmas. and K’ be the set of the points (x, y) in

K verifying
Vo= WA = al
Pick ¢ > 0 such that
& < aand
< Inf{d(W(f)(x). 4K,). x € K.} (4K, is the boundary of A )

and pick g in CY(K) such that

1]\
J

NN

A
— | << f ——
If - gl In{ T

l\)|

We will prove that g belongs 10 Q0
L d

. Regularity of _g_ (x.v):
ay

For all couple (x. y) in K and for all vector « in R, one has

iE ols Lol
jrg(x.‘v)uiz'—;-(r viw = || {fg(r\)
oy |l |l Lo
’ ‘( ) "I 23 0if 0
- Ty Z = ui > Ut e #
ay ;i 4 ’
ii- Existence of a solution 1o the equation g(x,. v) = 0

Let v bein K., v, be W(f)(x,) and F be the ¢ radius closed ball

centered at y,. We proceed by contradiction and >uppose that 0
1s not in g(x,. F). Since F is compact. the set g{ x,. F) is compact,
and therefore closed. Let  be the function

S [001]— Re
t——1g{ X v)

The set J~'[g(x,. F)] is closed: it contains | but not 0. We can
then define

T = Inf{ g(x,. F)]

which is in J7'[g(x,. F)]. and Y an element in £ such that

gl ¥y = UT) =

We can say that Y is on the boundary of F. Indeed. if ¥ was in
the interior of F. since dg/dy (x,. Y) is regular. the implicit func-
tions theorem would hold and g(x,. v) could be inverted from
a neighbourhood of Y (included in Fif Y is in the interior of F)
to a neighbourhood of g(x,, Y): this contradicts the fact that
g(x,. v,) has no antecedent in F as soon as ¢ < T. [t follows that
Y is on the boundary of F and satisfies

Tg(x.. v.).

‘;Y - ,\:Mi =e<a
Applying Lemma 2,
Wf(xn, Y)U — ?ff(Xm Y) - f‘(.(»;. \wﬂ
A |
> _2. 1Y — v
cA
S ea
2
one also has
I8 Yl = Tlg(x. )
= Tlglxu y) = flx vl
=g - fli
cA
o d
4

and, at last

(. ¥) = gl VIS 1If = gl < %

Those three inequalities are in contradiction with the triangular
inequality:

”f(xnv il = i'f(xm Y) - g(«ro, i+ el xy, Y.



