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ABSTRACT

The paper discusses the issues of model selection and variable (feature)
selection for nonlinear modeling. Methods are described, which were
designed to be simple and to involve little computational overhead, but
are nevertheless generic, since they do not involve ad hoc heuristics.
The principles of the methods are described, and pointers to the
description of applications are provided.



1 INTRODUCTION

For many years, a large part of the research in numerical machine learning was devoted to the design of
new learning machines (neural networks, radial basis function networks, wavelet networks, support vector
machines, just to name a few) and training algorithms. However, crucial issues such as model selection
and variable selection, which had been much investigated by statisticians, were considered only recently
in numerical machine learning. Many reports on industrial applications of machine learning still overlook
the importance of those issues. The present paper describes recently developed methods in variable
selection and model selection, which were extensively tested both on academic and on industrial
problems. It describes the basic ideas of the methods, and provides pointers to applications.

The first part of the paper is devoted to validation and cross-validation for model selection. Holdout has
long been the most widely used method because of its simplicity, but it makes a poor use of the available
data. Recent problems in bioinformatics, where data is sparse and candidate variables are very numerous,
have spurred the quest for methods that make the best possible use of the data for training and for model
selection.

The second part of the paper discusses variable selection separately from model selection; actually,
variable selection can be viewed as a special instance of model selection, but that approach tends to lead
to computer-intensive methods. We describe the random probe methods, which take into account the
specific problems related to variable selection, and solve them as such.

Finally, the limitations of the above methods are described, and open questions are outlined.

2 SOME VARIATIONS ON VALIDATION AND CROSS-VALIDATION FOR
MODEL SELECTION

In numerical machine learning, a model of the available data is sought, within a family of functions that
are usually not derived from prior knowledge (physics, chemistry, economics, ...), but which can
approximate any reasonable nonlinear function. For instance, a model is sought within the family of
neural networks, or of Radial Basis Function networks, wavelet networks, Gaussian kernel functions, etc.
The chosen family of functions has parameters that are adjusted by a suitable training algorithm, and it
has meta-parameters such as the number of hidden neurons, the width of the Gaussian kernel functions,
etc. Therefore, model selection is mandatory for finding the most appropriate values of the meta-
parameters, and, in the case of models that are nonlinear in their parameters, for finding the most
appropriate minima of the non-convex cost function.

That is in contrast to statistical regression, whereby a model is derived from prior knowledge and is
assumed to be unquestionably true. If that model has adjustable parameters, the latter are estimated from
experimental data by a suitable algorithm, which is often very similar (if not identical) to training
algorithms used in machine learning. In that context, the parameters usually have a specific meaning, and
the validity of the estimation of the parameters must be assessed, e.g. by computing confidence intervals
for the parameters.

Therefore, in machine learning, the validity of the predictions of the model is emphasized, whereas the
validity of the parameters of the model is emphasized in traditional regression. Hence, the central
question in machine learning is the generalization ability of the model: how does the model respond to
situations that are not present in the training set? The generalization error can be estimated from a
validation set, i.e. a set examples that have not been used for training the model; then the question that
arises is that of the validity of that estimation, which can be expressed statistically in terms of a
confidence interval on that estimation.

A confidence interval, with confidence threshold 1-¢ around the mean of a random variable Y, is an
interval that contains the value of the expectation of Y with probability 1-a (see for instance (Mood
1974)). Therefore, a confidence interval € on the difference between the estimate e, of the generalization
error (computed on a validation set), and the (unknown) true generalization error e is defined as:



Pr[(e, —e)ze]<l-a.
The solution to the problem of finding &, given « and the number of examples, involves the Vapnik-

Cervonenkis dimension of the model (Vapnik 1982). However, that principled approach leads to bounds
on the generalization error that are usually too loose for practical applications.

2.1 Hold-out

The simplest technique for estimating the generalization error is hold-out: part of the available data (the
training set) is used for training the model, and the rest of the data is hold out of the training set to serve
as a validation set, from which the generalization error is estimated (Stone 1974). That very simple
technique can be applied safely when the amount of available data is much larger than the number of
parameters of the model.

In the context of regression, signal modeling or process modeling, it is assumed that the result y* of the k-
th measurement of the quantity of interest can be modeled as the sum of an unknown function f{x*) and of
a realization & of a random variable A with zero expected value, which models all disturbances and
measurement noise. Denoting the model by g(x, 0), the purpose of training is to find a set of parameters

L . [1& .
that minimize the training root mean square error TMSE = N—ZR,f , where N; is the number of
T k=1

examples of the training set, and R, is the modeling error on example k of the training set:
R =y - g(xk ,6). Therefore, the generalization ability of the model is estimated by the root mean

[1& . .
square validation error VMSE = N—ZR,f , where N, is the number of examples in the validation set.
V k=1

The unbiased estimate of the standard deviation of the random variable A, estimated from a set of N
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measurements, is given by o, = \/m(yk - f(x")) . Therefore, if the model was perfect, i.e. if ix*) =

g(x*0) for all k, and if N >> 1, the training error and the validation error would be on the order of
magnitude of the standard deviation of the disturbances acting on the data and the noise present in it. This
makes sense since the model should not be expected to be more accurate than the data from which it is
designed.

Since the training error can be made arbitrarily small by increasing the complexity of the model, the latter
quantity should never be used for model selection. If the training error is substantially smaller than the
validation error, overfitting has occurred: the complexity of the model is too high given the available data,
so that the model has learnt the noise in addition to the deterministic part of the generating process of the
data, hence performs poorly on fresh data.

2.2 Cross-validation

As mentioned above, holdout is an appropriate technique if data is abundant, so that the estimation of the
generalization error on the validation set is reliable. If data is sparse, the number of elements in the
validation set is small, so that the estimation of the generalization error on a single data set becomes
unreliable. Then one must resort to cross-validation: the available data is split into D disjoint subsets,
training is performed on D-1 subsets and the modeling error is computed for all examples of the
validation set; the procedure is repeated D times with D different validation sets (D-fold cross-validation).
Therefore, each example is present once and only once in the validation set, and the cross-validation root
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mean square error is computed from the validation data: CVMSE = ’ﬁZ(RZ )2 , where N is the total
k=1

number of examples and R, is the modeling error on example k when the latter is in the validation
subset. Therefore, cross-validation uses all examples for estimating the generalization error, while holdout



uses only the elements of the holdout set. However, no unbiased estimator of the variance of cross-
validation can be found, whereas such estimators exist for holdout (Bengio 2003).

2.3 Leave-one-out and virtual leave-one-out

When data is very sparse, the best estimate of the generalization error can be obtained by the leave-one-
out technique. Leave-one-out is cross-validation with D = 1: each example is withdrawn in turn from the
data set, training is performed with N — 1 examples, and the modeling error is computed on the left-out
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example. The leave-one-out score is subsequently computed as E, = ,WZ(RI_I) , where R is the
i=1

modeling error on example i when it is withdrawn from the training set. The leave-one-out score can be
shown to be an unbiased estimate of the generalization error. However, it is a computer-intensive
procedure.
Its computational burden can be alleviated to a considerable extent by the virtual leave-one-out
procedure. First consider a linear model: g(x, ) = x’ 0, where the superscript T denotes matrix
transposition, and 0 is the vector of parameters, of size p. Then the least squares solution is given by

0, =(X'X) X'y (1)
where y is the N-vector of the observations, and X is the observation matrix, i.e. the (N, p) matrix whose
columns are the observed values of the variables; hence matrix X has p columns, each of which has size
N. If example i is left out of the training set, then a different model 92; is derived. We denote by R” the
N-vector of the residuals (modeling errors) of the model trained without example i, N-1 of which pertain
to the training set, and one of which, Ri’i, is the residual of the left-out example. We show in the

following that Ri’i can be computed exactly from the modeling error of example i when that example is
within the training set.

The cost function for the model computed with all example is J = R'R , where R is the N-vector of its
residuals. Since J is minimum for the least-squares solution, one has:

0=X"R. (2)

We denote by R” the N-vector of modeling errors on the full data set. Then the cost function for the
. AT . \2

model trained without example i is given by: J ' = (R") R™ —(R,,") ; since it is minimum for the
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L » one has:

parameter vector 6
0=X'R"-Rx, 3)
where ¥, is the p-vector of variables for example i (x" is row i of matrix X).

Moreover, one has

R =y-X6,; =R-X(6,;-6,) (4)
Combining (2), (3) and (4), one obtains:
0=-X"X(0, -0, )-Rx, + Rxx (6,;-6,) (5)
Therefore:
0,.-06,,=-R (XTX - XX )_l X, (6)
hence:
R = R,.[l+x,.T (XX —xx")" xi] 7)

From the Sherman-Morrison matrix inversion lemma, one has:
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(X'X-xx/) =(X"X) + o (8)
Therefore, relation (7) can be written as:
. R
R =1 ©)
where
h=x" (X'X) ' x (10)
is the diagonal element of the orthogonal projection matrix (also termed “hat matrix”)
H=X(X"X) X', (1)

Therefore, for linear models, the leave-one-out score can be computed exactly; it is the square root of the
PRESS (Predicted Residual Sum of Squares) statistic:
1S R Y
PRESS = — — 12
N g‘[ 1—h, ] 42
For models that are nonlinear with respect to their parameters, a first-order Taylor expansion of the model
with respect to its parameters can be written:
g(x.07)=~g(x.0)+Z(6" -0) (13)

under the assumption that the withdrawal of the example from the training set does not affect the model
substantially. In relation (13), Z is the jacobian matrix of the model

7 Jg(x,0) ’
! 0, )

0 is the vector of the parameters obtained after training from the whole data set: it is the vector of
parameters corresponding to a (possibly local) minimum of the cost function, and 07 is the vector of
parameters after training the model from all examples except example i.

Based on relation (13), it can be shown (Monari and Dreyfus 2002) that an approximation of the leave-
one-out score, termed virtual leave-one-out score, can be derived as:

(14)

where h; is the i-th diagonal element of matrix

H=2(2'2)'Z' (15)
Note the similarity with relation (11). Whether the model is linear or nonlinear in its parameters, the
leverages, being diagonal elements of an orthogonal projection matrix, comply with the following

relations:
0<h, <1 (16)

N
Yh=p (17)
i=1

where p is the number of parameters of the model.

As a preliminary check, the rank of the jacobian matrix should be checked: a rank deficiency of the
jacobian matrix means that there is a linear dependence between columns of the matrix, i.e. between the
derivatives of the output with respect to the variables. For instance, if two columns are proportional, the
derivatives of the model with respect to the two corresponding parameters are proportional; therefore, the
number of parameters is too high given the complexity of the data; such a situation is very likely to give
rise to overfitting.



When several candidate models, with different variables and/or different structures, have virtual leave-
one-out scores that are on the same order of magnitude, i.e. when they differ by amounts that are on the
order of magnitude of the standard deviation of the noise, the significance of the differences between the
estimated performances of the models must be assessed; that can be done by statistical tests (see for
instance (Anders 1999)). In such a case, an additional selection criterion may be used, which relies on the
interpretation of the leverages.

2.4 Interpretation of the leverages, model selection and experimental planning
As mentioned in the previous section, the sum of the leverages is equal to the number of parameters of the

N
model: Zhﬁ = p . Therefore, the leverage of example i can be regarded as the fraction of the degrees of
i=1
freedom of the model that is used up by the model for fitting example i. Therefore, examples that have
large leverages are examples that use up a large part of the parameters of the model, which is of course
detrimental to the generalization error: the model is highly specialized on those points and is likely to
generalize poorly. Clear examples of such situations can be found in (Oussar 2004).
Ideally, one would like all observations to have the same influence on the model; if that was possible,
then one would have h; = p/N for all i. Although that is generally impossible to achieve (unless the
number of examples is equal to the number of parameters), it is desirable that the distribution of the
leverages be as peaked as possible around their mean value p/N. That condition can be expressed by the
normalized standard deviation of the leverages o,,:

o ~\omt(n-8)

o, = 0 if all leverages are equal to p/N, and o, = 1 in the worst case, where p examples have leverages
equal to 1 and N-p leverages are equal to zero.

To summarize, selection among candidate models, having different features and/or different complexities,
can be performed economically as follows:

e check the rank of the jacobian matrix of the model; discard any model whose jacobian matrix is
rank deficient;

e compute the virtual leave-one-out scores of the candidate models; select the model(s) whose
leave-one-out scores are smallest, and differ by less than the standard deviation of the noise, or
which differ by quantities that are not considered statistically significant;

e among the latter models, select the model whose leverages are least scattered around the mean
value.

As a final assessment of the quality of the predictions of the model, confidence interval can be computed,
either analytically or by resampling (see for instance (Efron and Tibshirani 1993)). A confidence interval
that uses the elements of the jacobian matrix, as defined above, can be convenient (Seber and Wild 1989);

it is centered on the model prediction g(x, ), and its width w is given by w =2¢""s\|z" (ZTZ)f1 z,

P
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where )7 is the realization of a Student variable at level of significance ¢, and s° = N1 E R’.
L=

Figure 1 shows the training data, the prediction of a model trained from that data, and the confidence
intervals for that model. As expected, the confidence intervals are very large where data is not present.
Figure 2 illustrates the improvement that can be obtained by simply adding two examples at appropriate
locations in input space. Discovering the optimal location of examples in input space in order to obtain
the best model with the minimum number of experiments is known as experimental planning.



Figure 1
Solid line: prediction of the model; dashed lines: boundaries of the confidence interval on the prediction.

Figure 2
Solid line: prediction of the model; dashed lines: boundaries of the confidence interval on the prediction.

Note that, for models that are linear in their parameters, the leverages do not depend on the model: they
depend only on the location of the examples in input space. That is evidenced from relation (10), which
involves matrix X only. That is the reason why optimal experimental planning can be performed for linear
models (D-optimal experimental planning) insofar as the number of parameters of the model, and their
range of variation, are known.

By contrast, for models that are nonlinear with respect to their parameters, the jacobian matrix depends on
the parameters of the model. Therefore, experimental planning must be performed in a iterative fashion:
some experiments must be performed in order to build a first tentative model, which can be further
refined by performing ““ optimal” experiments given that model, and so on iteratively until the budget of
feasible experiments is exhausted. An industrial applications of D-optimal experimental planning of
neural models in described in (Quach 2004).

The above techniques provide simple, computationally inexpensive means of assessing the generalization
ability of a model with its selected variables. For a given model, they provide assessments of the
suitability of different features, hence can serve for feature selection. In the next section, we describe the
“random probe” methodology, which is more specifically designed for feature selection.



3 VARIABLE SELECTION AND RANDOM PROBES

Variable selection is a very important step in the design of a statistical model, for two reasons: first, the
number of parameters of the model increases with the number of variables, which in turn increases the
number of observations that are necessary for a reasonable estimation of the parameters; in addition,
irrelevant variables just add noise to the model, which makes model design more difficult. Therefore, the
model designer should strive to incorporate all influential variables in the model, but to discard all
irrelevant variables, i.e. variables whose influence on the quantity to be modeled is smaller than the
measurement noise of that quantity. A general introduction to the variable selection problem can be found
in (Guyon 2003).

The first step of a principled variable selection method consists in defining a “relevance index”, i.e. some
quantity that describes the relevance of the candidate variables for the prediction of the quantity to be
modeled. Thus, the variable selection problem can be viewed as a classification problem: given a feature
(the relevance index), assign each candidate variable to one of the two classes “relevant” or “irrelevant”.
Therefore, the probability distribution functions (pdf’s) of the relevance index for relevant variables and
for irrelevant variables should be as far apart as possible, so that a relevance threshold can be easily
defined (Figure 3). Conversely, if the pdf’s have significant overlap, then “false negatives” (variables that
are discarded although they are relevant) and “false positives” (variables that are selected although they
are irrelevant nonzero probability) have nonzero probabilities (Figure 4); then a threshold r, must be
chosen, which minimizes the total error risk, or one of them if all errors do not have the same cost. In
contrast to statistical classification problems, both distributions are unknown, and no “example” of
elements of the classes is available.

Figure 3
Probability distributions of relevant and irrelevant variables



Figure 4
Probability distributions of relevant and irrelevant variables; if the relevance threshold is chosen equal to
r*, the probability of wrong selection is minimum

Basically, the random probe method consists in generating “fake” candidate variables, computing their
relevance index and the probability distribution function thereof, and setting the relevance threshold
accordingly.

3.1 Generation of the random probes

Random probes can be generated in a number of ways. Since the variables are usually scaled and
centered, random features can be generated by simply shuffling randomly the components of candidate
feature vectors (Bi 2003). Alternatively, random features can be generated from a distribution that is
centered on zero and has variance equal to 1, e.g. a normal distribution (assuming that, according to sound
practice, the candidate features are centered and normalized prior to any processing); the advantage of
using the latter distribution will be explained in the next section.

3.2 Assessment of the relevance of the candidate features

Relevance assessment is most easily performed by constructing a model that is linear in its parameters,
e.g. a polynomial model or a Support Vector Machine (Rakotomamonjy 2003). The features that are thus
selected are then used for constructing a nonlinear-in-its-parameters model, if necessary.

In a first step, the set of candidate features, including the random probes, is defined. Since variable
selection aims at designing an efficient model, a polynomial (typically quadratic) model is used for
feature selection; therefore, the set of candidate variables contains the p primary candidate variables, and
the p(p+1)/2 pairwise combinations of the primary variables, termed secondary variables.

The relevance of candidate variables can be assessed in a computationally efficient way by orthogonal
forward regression (Chen et al. 1989): in observation space (of dimension N, where N is the number of
observations in the training set), each candidate feature is depicted as a vector x whose components are
the values of that input over the training set, and the quantity to be modeled is similarly depicted by an N-



vector y. If the angle ¢, between a candidate input and the output is zero, the model can be written as
y = A x, so that the variable x explains completely the output. Conversely, if the angle is 7t/2, feature x is
completely irrelevant. Therefore, the dot product between each candidate input and the output, in
observation space, can be a relevance index. In practice, it is more convenient to compute:

2
cos’ @, = (yx) (18)
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where X; is the vector of observations of the i-th candidate variable.
In order to rank the inputs in order of decreasing relevance, the following orthogonalization procedure,
which is similar to orthogonal forward regression (Chen et al. 1989) can be used:
e select the candidate variable that has the smallest angle (largest cos’¢;) with the quantity to be
modeled in observation space;
e project the output vector and all other candidate features onto the null space of the selected
variable; compute the parameter pertaining to that input in the linear-in-its-parameters model;
e iterate in that subspace.
The orthogonalization step can be performed efficiently by the modified Gram-Schmidt procedure
(Bjorck 1967).
The procedure terminates when all candidate features are ranked, or when a prescribed stopping
condition, as described below, is met. If the model thus obtained is not satisfactory, a new model should
be built, with higher degree if a polynomial is used.

3.3 Variable selection with random probes

The relevance of the candidate variables, including the probes, being assessed by their ranks in the ranked
list built as described in the previous section, the relevance threshold must be chosen as described on
Figure 3 and Figure 4. Instead of estimating the probability distribution function of the rank of the probes,
its cumulative distribution function (cdf) is either estimated by enumeration, or computed analytically.
The probability that the rank is smaller than or equal to a given rank r is estimated as the number of
realizations of the random probe that have a rank smaller than or equal to 7, divided by the total number
of realizations of the probe. Alternatively, if the probes are drawn from a normal distribution, the cdf of
the rank can be computed exactly as described in (Stoppiglia et al. 2003).

Since the cdf of the relevant variables is unknown, the choice of the relevance threshold can be made as
follows: as the number of parameters increases with the number of variables, the latter should be kept as
low as possible if data is sparse. Therefore, a small risk of false positive (keeping a candidate variable
although it is irrelevant) will be chosen if a small amount of data is available; conversely, if there is a
wealth of data, a larger risk may be acceptable. Thus, at each step of the orthogonalization procedure
described above, the value of the cumulative distribution function is compared to the predefined risk, and
ranking is terminated when that threshold is reached. This has an importance consequence: the method
can handle problems where the number of candidate variables is larger than the number of examples; the
only limitation is related to the number of really relevant variables, which must be smaller than the
number of examples.

Figure 2 displays the cumulative distribution function of the rank of the random probe, as estimated from
100 realizations of the random probe, and computed analytically, for a problem with 10 candidate
variables. If a 10 % risk is chosen, the first five features should be selected.



Figure 5
Estimated and computed cumulative distribution function of the rank of a random probe for a problem
with ten candidate variables.

It has been shown (Stoppiglia et al. 2003) that the random probe method can be viewed as a
generalization of Fisher’s test for variable selection, which does not rely on the assumption that the
complete model contains the regression, and which does not make any specific assumption about the
distribution of the probe.

4 APPLICATIONS

The methods described in the previous sections are generic and completely application-independent. They
have been used in a variety of applications.

Both the model selection and the variable selection methods were used in the design of a virtual sensor
for car assembly applications. Spot welding is the prevalent technique for metal sheet assembly: the
sheets re pressed between two electrodes, and a current of a few kiloamperes is passed through the
electrodes during a few tens of milliseconds, resulting in an intense Joule heating that melts the metal
locally. After cooling, the melted zone binds the two sheets together, and its diameter is an indicator of
the strength of the weld. At present, no fast, non-destructive method exists for measuring the spot
diameter, so that there is no way of assessing the quality of the weld immediately after welding. Modeling
the dynamics of the welding process from first principles is a difficult task, which cannot be performed in
real time. These considerations led to considering black-box model that predicts the diameter of the spot
from electrical and mechanical measurements performed during welding for designing a "virtual sensor"
of the spot diameter from electrical and mechanical measurements performed during welding. The main
concerns for the modeling task were the choice of the model inputs, and the limited amount of examples
available initially in the database. Variable selection (Monari 1999) was performed both by the random
probe method, and by more classical methods (stepwise backward regression and statistical tests based on
performance comparisons), with identical results, but at a lower computational cost. The process experts
validated the variable set thus obtained. Model selection was performed by virtual leave-one-out as
described above.

Similarly, both the variable selection and the model selection methods were successfully used for the
design of a virtual sensor for medical applications: in that area, the purpose is to replace costly chemical
tests by a machine learning method that predicts the outcome of that test from results of much cheaper



tests. The problem is highly nonlinear; there were a few tens of candidate variables, and model selection
was performed as described in sections 2.3 and 2.4.

The above applications are in the area of nonlinear regression. However, the methods described above can
be used for classification applications too. It was most successful in natural language processing, for the
task of information filtering. The purpose is to find automatically, in a large corpus of texts (e.g. all press
releases of Reuter or Agence France Presse), the texts that are relevant to topics that are defined by a few
words. That can be formalized as a 2-class classification problem (a text is either relevant or irrelevant).
In the so-called “bag of words” approach, each text is described by a vector of numbers that are related to
the ration of the frequency of occurrence of each word in the text under consideration to its frequency in
the whole corpus; therefore, the size of the vector of variables is equal to the number of words in the
dictionary. Therefore, variable selection is a crucial step. It was showed that, on the average, the
vocabulary that is specific to a topic (hence discriminant) has 25 words, which is a tremendous
complexity reduction. It was a key factor in the success of that application, which won the TREC’9
international competition (Stricker 1999), (Wolinski 2000).

S DISCUSSION AND CONCLUSION

In the present paper, two all-important problems in nonlinear model design have been addressed: variable
selection and model selection. Although they were discussed separately, it is clear that model selection is
not independent from variable selection. For instance, instead of choosing a priori a given risk for setting
the relevance threshold, one might choose a range of variation for the risk and wrap a variable selection
loop around a model design and selection software module. The link between model selection and
experimental planning was also emphasized.

There are, however, several important issues that are still under active investigation. First, the probe
method using ranking by orthogonalization as a relevance index cannot be safely applied if the number of
relevant variables is larger than the number of examples. Although that is an unusual situation, it may
arise in biomedical applications related to genomics or proteomics. An efficient solution to that problem
is described in (Neal 2005).

For model selection, the estimation of the generalization error by the virtual leave-one-out score is limited
in its applicability to the validity of the first-order Taylor expansion of the model output in parameter
space. A generalization of the leverages described here, taking into account second derivatives, has been
computed and is under investigation.

Despite their limitations, the methods described here have been used very successfully in many
applications, in areas ranging from drug design to automatic language processing and virtual sensor
design. They are the keys to successful applications given the present state of the art.
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