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ABSTRACT 

 
The present paper addresses the problem of graph recognition; since graph representations are 
central in Artificial Intelligence, this problem has attracted considerable interest. In 
contradistinction to the widespread opinion that neural networks are unable to handle structured 
data, we show that graph recognition can indeed be performed by making use of a variant of a 
neural network model suggested recently. Simulations were performed to investigate the 
capabilities of the network with respect to system size, to the number of stored graphs and to the 
noise level of the input. 

 
1. INTRODUCTION 

 
A central problem in Artificial Intelligence as well as in the field of neural networks is that of data 
representation: a proper representation is, in most cases, the key to the solution of a given 
problem. Up to now, the representations used by neural networks were essentially low-level 
typically, in problems of visual pattern recognition, one neuron would code for one picture 
element. Conversely, symbolic computing uses high-level, relational representations of 
knowledge; in pattern recognition or scene analysis, structural descriptions of the pictures are 
used, such as graphs describing the relations between objects in a scene, between edges of an 
object, etc [1]. It has often been argued that neural networks, being unable to handle graphs, are 
restricted in scope to handling unstructured representations. A first attempt at a relational 
treatment of pictures was suggested by C. von der Malsburg and E. Bienenstock (see in the 
present proceedings the paper by E. Bienenstock and R. Doursat, and references therein); it is 
based on the conjecture of fast synaptic plasticity, and is aimed at a relational treatment in 
low-level vision, i.e. on raw images. 
 
An alternative approach was taken in Ref. 2; a neural network model was suggested for the 
recognition of isomorphisms of unlabelled graphs, which is known to be an NP-complete 
problem in its general form. In the present paper, it is shown that a variant of the latter model 

has the ability of performing error-correcting isomorphism. We will first outline the original 
method, and subsequently describe the variant that is suggested here; simulation results will be 
presented, and the virtues and limitations of the method in its present state will be assessed. 
Further developments and improvements will be outlined. 
 

2. DEFINITIONS AND MODELS 
2.1 General description:  
In all the following, we consider graphs with a maximum of N nodes, labeled in an arbitrary way 
from i = 1 to N; thus, there are N(N-1)/2 possible undirected edges. The presence or the 
absence of an edge between nodes I and j in a given graph is denoted by a variable G1 which 
takes on the value +1 if edge (ij) is present in the graph and O if it is absent. A graph is therefore 
represented by its connectivity matrix G, as shown in Fig. 1. 
 

 
Figure 1  

Two graphs are isomorphic if there exists a permutation of the nodes that makes both graphs 
identical (Figure 2). 
 

 
Figure 2 

Two isomorphic graphs: permutation (1, 2, 4, 3) maps the left graph onto the right one. 
 
 
The problem that is addressed here is the following given a collection of prototype graphs, find 
whether an unknown graph is isomorphic to one of the prototype graphs; in the negative, find 
whether the unknown graph is topologically close to one of the prototype graphs. 
This problem can also be expressed as: is it possible to find a permutation of the nodes of the 
input graph which maps the latter onto one of the prototype graphs, or which makes it as similar 
as possible to one of the prototype graphs? 
 
 
This can be performed by the simultaneous operation of two coupled neural networks: 



• a Hopfield -Tank optimizer [3] to find a graph that is obtained by a permutation of the nodes 
of the input graph, 

• a Hopfield associative memory [4], which determines whether the graph found by the first 
net, is identical with or close to one of the prototype graphs. 

 
The operation of the first network (termed "preprocessor") can be understood as follows: a 
Hopfield -Tank optimizer with N2 neurons can be designed so as to find a permutation of N nodes 
which minimizes the distance between a given graph and a graph produced by the permutation 
of the nodes of the input graph. In other words, the network, left to evolve spontaneously, would 
reach a state of minimum energy that codes for a permutation of the nodes of the input graph 
mapping the latter onto a given graph. This operation is very similar to that used to solve the 
traveling salesman problem, where the neural network is able to find a permutation of N towns 
which minimizes the length of a tour. 
 
The second network (termed "memory" network) is a standard associative net with N(N-1)/2 
neurons; its synaptic couplings Jij are computed in such a way that the prototype graphs are 
global energy minima of the network [5]. Once initialized in a state (coding for a graph), it will 
evolve until it reaches a state of minimal energy; therefore, it has the ability to associate the initial 
graph to one of the prototype graphs. 
 
When both networks evolve simultaneously, they will both be driven to a state of minimal energy, 
thereby, 
i - finding, by operation of the preprocessor network, a permutation of the nodes of the input 
graph, 
ii - retrieving, by operation of the memory network, the prototype graph which is topologically 
closest to the graph generated by application of the above permutation to the unknown graph. 
 
 
2.2 Mathematical analysis 
 
As stated above, the system consists of two coupled networks (the preprocessor and the 
memory). In addition, a layer of input units (the receptor) is used for defining the input graph; it 
has N(N-1)/2 units, each of them coding for the presence or the absence, in the input graph, of 
an edge between two nodes. The nodes are numbered from 1 to N, and the state of the unit 
coding for edge (ij) is denoted by Gij, which can take on the values 1 or 0, as described in the 
previous section. 
 
The memory network is designed to store and retrieve graphs which have the same 
characteristics as those defined on the receptor layer: the N nodes are labeled from α = 1 to N; 
the state of neuron sαβ codes for the presence (sαβ = 1) or the absence (sαβ = 0) of an edge 
between nodes α and β. The N(N-1)/2 neurons in the memory interact through the Hamiltonian 
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The synaptic couplings Jαβγδ are determined by a suitable learning algorithm from the graphs to 
be learnt !"#

${ } . 
 
In order to recognize isomorphic graphs, we have to compare two graphs, one of which - the 
input graph G - is defined on the receptor, and the other one is encoded as the state {sαβ} of the 
memory. In particular, we want to know whether there exists a transformation T which maps all 

nodes of the graph described by {Gij} on the nodes of the graph defined by {sαβ}. These 
transformations consist of all the different labelings of the N points of the receptor: each of them 
can be represented by a (N, N) matrix tiα ∈ (0,1). Since one node i is mapped exactly onto one 
node α, there is one and only one element equal to 1 in each row and in each column of T (see 
Figure 2). In order to compare the topology of two graphs, one can use the minimum of their 
Euclidean distance 
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Two graphs are isomorphic if D = 0. 
 
In the present approach, the transformations are represented as states of neural activity: the 
elements tiα of the transformation matrix are encoded into the states of the N2 neurons of the 
preprocessor. The spontaneous evolution of the preprocessor leads to a state that is a minimum 
of the function 

HP = d2 s,T+GT( ) +Hpenalty  
The last term is introduced to enforce the constraints 
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Additional details are given in Ref. 2. 
 
Recognition of isomorphic graphs is achieved by the combined action of the preprocessor and 
the memory. During the learning phase, a set of prototype graphs Gij
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receptor; each of them is transformed into a state !"#
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where each transformation Tν is arbitrary; the simplest choice is the identity transformation, so 
that the graphs stored in the memory are identical to the prototype graphs; the choice of the Tν’s 
will be discussed below. The projection rule [5] is used to store the patterns; if the latter are 
linearly independent, it can be expressed as 
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and J!"!" = 0 . 
 
After the network has learnt p patterns, it is presented with a graph G that is an isomorphism of 
one of the stored graphs. In order to recognize the isomorphic prototype, the neurons of the 
preprocessor and those of the memory are allowed to evolve simultaneously, thereby generating 
isomorphisms of the input graph and retrieving one of the learnt patterns. The evolution of the 
states {tiα} and {sαβ} is determined by the total Hamiltonian: 

H = !d
2
s,T

+
GT( ) +HM s( ) . 



The learnt graphs are the global minima of HM, and the distance d vanishes if the preprocessor 
has found a transformation T that maps all nodes of the input graph G onto the nodes of the 
graph represented by the state of the memory s. Thus, the global minima of H are given by 
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Therefore, an isomorphism is recognized if a global minimum is found. 
 
2.3 Operational model 
 
In this section, we introduce a variant of the above model, which we used for the simulations. 
The motivation for this variant is twofold: 
 
a) one problem with the above approach lies in the use of a Hopfield-Tank optimizer to find a 
permutation of the nodes of the unknown graph. It is well known that such networks would be 
potentially very powerful, by virtue of their massive parallelism [6], if they were actually 
manufactured in silicon; however, there is only one known realization of such a network, and it is 
unlikely that it will become widely available. Therefore, one has to perform computer simulations 
that are extremely slow and make the whole thing impractical for networks of realistic size. In 
order to avoid this, we consider a limiting case of the model: we take λ>> 1, so that states of the 
memory network which are not isomorphisms of the input graph have a very high cost, hence 
are very unlikely to occur; in the limiting case ! " # , the only possible states for the memory 
network code for isomorphisms of the input graph, so that the energy which is minimized by the 
system is given by: 
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#,$,% ,&

'  

with: 

 !"# = ti" t j# 2Gij $1( )
i,j

%  

b) In addition to recognizing isomorphisms of the prototype graphs, we want the network to 
perform error-correcting isomorphism: if the input graph differs from an isomorphism of a 
prototype by some amount of random noise, we want the system to be able to recognize it. 
 
In order to satisfy the above two requirements, we suggest a modified procedure which consists 
of two steps: 
 
1 - in a first step, a search is performed for a graph, isomorphic to the unknown one, which 
minimizes the energy of the network. This minimization procedure should lead to a global 
minimum, which corresponds to the isomorphism which minimizes the distance between the 
transformed input graph and one of the prototype graphs; if the final energy is that of a prototype 
graph, the procedure stops; 
 
2 - if no prototype graph is found, the neural network is initialized in the state coding for the 
graph found in the previous step, and left to evolve under the usual neural dynamics, without 
restrictions on the state of the neurons: if the state found by the previous search is not very 
different from one of the prototype graphs, the network will reach one of the global minima, 
which will be the prototype which is topologically closest to the unknown graph. 
 
Thus, the two steps are distinguished by the dynamics of the network: in the first step, the states 
are restricted to isomorphisms of the input graph, whereas, in the second state, no such 
restriction exists. 

3. SIMULATIONS 
 
 
Step 1 can be carried out by any suitable iterative search procedure; the simulations presented 
here use simulated annealing [7], with parameter settings as in Ref. 8. The elementary move is 
the exchange of two nodes of the graph. Step 2 uses a neural network with sequential 
dynamics. 
 
The prototype states used in the following experiments are shown on Figure 3. They have a 
maximum of 9 nodes, and represent a variety of topologies for planar and non-planar graphs. It 
is known that the error-correcting abilities of a neural network are improved if the Hamming 
distance between the stored patterns is large. In order to increase the distance between the 
stored patterns that code for the graphs, we first transformed the prototypes by applying to the 
nodes of each prototype !"  a random permutation Tν. A random permutation is a simple choice, 
presumably not an optimal one. Note, however, that the basins of attraction of the whole system 
are not governed by Hamming distance alone (see the following discussion). 
 
3.1 Recognition of isomorphic graphs 
In a typical set of experiments, fifty unknown graphs, all of them isomorphic to graph G1, were 
generated. All fifty graphs were presented as inputs to networks whose neurons encode the 
links of a lattice of N points, and in which we stored p prototypes the following combinations 
were investigated: N=9, p=6; N=9, p=12; N=12, p=6; N=12, p=l2. Under all these conditions the 
fifty graphs were successfully recognized through step 1 alone. 
 
 
3.2 Discussion-  
There are special cases, resulting in failures, which raise an interesting question: what kind of 
local minima can be reached, and how difficult is it to escape from them and retrieve a ground 
state? A good illustration is observed when one presents an isomorphism of G4 as an input. In 9 
runs out of 50, the net with N=12 fails to identify G4, whereas it learned G1 to G9 or G1 to G11. In 
6 failures out of 9, the best match found by the system was G2. This is not surprising since G4 is 
a subgraph of G2. Consider, for example, a rotated version of G4 as the input (Figure 4). To 
escape from this state, three two-point exchanges that increase the energy should be accepted 
in sequence; conversely, if four-point exchanges were allowed, only one energetically 
unfavorable elementary move would be needed; if eight-point exchanges were allowed, this 
state would no longer be a local minimum. 
 
The above example shows a particularly difficult case, because the input has eight possibilities 
to become a subgraph of G2 and only two possibilities to match G4. These results do not depend 
on the number of stored prototypes (within the range of parameters in our simulations), provided 
no new supergraph is introduced; however, if G12 is stored, then isomorphisms of G4 are likely to 
be identified as G12. Again, there are eight possibilities for G4 to be a subgraph of G12 
There are also local minima that do not correspond to supergraphs, but have very small optimal 
distances. In the above example, G5 is a good candidate, with D2(G5, G4) = 2. 
 
3.3 Recognition of non-isomorphic graphs 
In these experiments, the unknown graphs are isomorphisms of one of the prototype graphs, 
with extra edges or missing edges. We studied in detail networks with N=12 and p=6, 9, or 12. 
The error-correcting properties of the system depend strongly on the number of stored 
prototypes. If 6 prototypes are stored, adding 3 or 4 edges leads to 100 % correct recognition. If 
7 edges are added, 80% success is still achieved. An example of error correction is 
 



 
 

Figure 3         
Twelve graphs stored as fixed points in the memory network. 

 
 

shown on Figure 5. As expected, error correction becomes less efficient it the number of 
prototypes is increased this is due only in part to the classical saturation phenomenon 
observed usually in neural networks: it is also due to the fact that, as more prototypes are 
added, there is a greater probability that some of them are topologically close to each other. As 
an illustration, consider the following example: we stored the first 9 graphs in the network; it 
was presented with isomorphisms of graph G with edge 3-5 missing; the network identified 
them as G7 in 7 cases out of 50. When we added an edge instead of deleting one, this 
happened 8 times out of 50: this is due to the fact that graph G7 is the prototype graph that is 
closest (in terms of the distance between graphs) to G1. 
 

 
Figure 4 

(a) A possible input G. The arrows indicate a four-point permutation leading to the graph shown 
in (b). This configuration represents a saddle point, from which the system can reach the global 

minimum shown in (c) by another four-point permutation. (d) A possible input G, which is an 
isomorphism of G4 but has a small distance to G12, which is a supergraph of G4. 

 



 
Figure 5 

a) Input graph, which is an isomorphism of G1, with 2 missing links. b) Stable 
state reached by simulated annealing. c) State reached by the memory network: 

prototype graph G1. 
 
 
3.3 Conclusion 
 
The above results show that the simulated network model can generalize quite successfully 
over equivalent topologies. Even when it fails to recognize the correct isomorphism, it 
nevertheless identifies a graph that is topologically close to it. In this sense, the very failures 
correspond to a generalization over topological features - albeit an incomplete one. The rate of 
failures as well as the recognition times were found to depend strongly on the prototypes and on 
the input. A systematic assessment of the capabilities of the system will be possible only by 
investigating special classes of graphs. 
 

4. CONCLUSIONS 
 
The present paper shows that neural networks have the ability to handle structured data, so that 
they can be used for high-level processing; we prove experimentally that graph recognition can 
be achieved this may have an impact in various fields where graph recognition is important 
picture processing, scene analysis, description of chemical structures, relational database 
systems, switching theory, etc. It must be pointed out, however, that the procedure which is 
presented here is by no means optimized, and that a number of variations and improvements 
must be investigated among these are the use of alternative optimization conditions (exchanges 
of more than two nodes, constant-temperature operation), alternative optimization algorithms (is 
simulated annealing the most appropriate search method for this problem?), and alternative 
learning rules. 
 
Furthermore, the simulations that were performed were restricted to a special case of a more 
general network for graph recognition; this choice simplifies the simulation to a great extent and 
makes error-correcting isomorphism possible, but it may not be optimal. The performances of 
the system should be investigated in the full space of the parameters that specify the 
architecture. It should also be noticed that the problem of graph recognition is treated here in a 
completely general way: the method can be applied to any non-labeled graph subjected to any 
topology-conserving transformation. For practical applications, this may be too general: some 
special classes of graphs, or some special transformations only may be of interest However 
preliminary the present results, the approach suggested here is promising because it may 
 

be expected to open a new class of applications for neural networks. 
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