
GRAPH RECOGNITION BY NEURAL NETWORKS

G. DREYFUS

Ecole Supérieure de Physique et de Chimie Industrielles
de la Ville de Paris

Laboratoire d'Electronique
10 rue Vauquelin
F - 75005 PARIS

FRANCE

and

A. ZIPPELIUS

Institut für Theoretische Physik,
Georg-August Universität

Bunsenstrasse 9
D - 3400 GÖETTINGEN

FRG

ABSTRACT

The present paper addresses the problem of graph recognition; since graph representations are
central in Artificial Intelligence, this problem has attracted considerable interest. In
contradistinction to the widespread opinion that neural networks are unable to handle structured
data, we show that graph recognition can indeed be performed by making use of a variant of a
neural network model suggested recently. Simulations were performed to investigate the
capabilities of the network with respect to system size, to the number of stored graphs and to the
noise level of the input.

1. INTRODUCTION

A central problem in Artificial Intelligence as well as in the field of neural networks is that of data
representation: a proper representation is, in most cases, the key to the solution of a given
problem. Up to now, the representations used by neural networks were essentially low-level
typically, in problems of visual pattern recognition, one neuron would code for one picture
element. Conversely, symbolic computing uses high-level, relational representations of
knowledge; in pattern recognition or scene analysis, structural descriptions of the pictures are
used, such as graphs describing the relations between objects in a scene, between edges of an
object, etc [1]. It has often been argued that neural networks, being unable to handle graphs, are
restricted in scope to handling unstructured representations. A first attempt at a relational
treatment of pictures was suggested by C. von der Malsburg and E. Bienenstock (see in the
present proceedings the paper by E. Bienenstock and R. Doursat, and references therein); it is
based on the conjecture of fast synaptic plasticity, and is aimed at a relational treatment in
low-level vision, i.e. on raw images.

An alternative approach was taken in Ref. 2; a neural network model was suggested for the
recognition of isomorphisms of unlabelled graphs, which is known to be an NP-complete
problem in its general form. In the present paper, it is shown that a variant of the latter model

has the ability of performing error-correcting isomorphism. We will first outline the original
method, and subsequently describe the variant that is suggested here; simulation results will be
presented, and the virtues and limitations of the method in its present state will be assessed.
Further developments and improvements will be outlined.

2. DEFINITIONS AND MODELS
2.1 General description:
In all the following, we consider graphs with a maximum of N nodes, labeled in an arbitrary way
from i = 1 to N; thus, there are N(N-1)/2 possible undirected edges. The presence or the
absence of an edge between nodes I and j in a given graph is denoted by a variable G1 which
takes on the value +1 if edge (ij) is present in the graph and O if it is absent. A graph is therefore
represented by its connectivity matrix G, as shown in Fig. 1.

Figure 1

Two graphs are isomorphic if there exists a permutation of the nodes that makes both graphs
identical (Figure 2).

Figure 2

Two isomorphic graphs: permutation (1, 2, 4, 3) maps the left graph onto the right one.

The problem that is addressed here is the following given a collection of prototype graphs, find
whether an unknown graph is isomorphic to one of the prototype graphs; in the negative, find
whether the unknown graph is topologically close to one of the prototype graphs.
This problem can also be expressed as: is it possible to find a permutation of the nodes of the
input graph which maps the latter onto one of the prototype graphs, or which makes it as similar
as possible to one of the prototype graphs?

This can be performed by the simultaneous operation of two coupled neural networks:

• a Hopfield -Tank optimizer [3] to find a graph that is obtained by a permutation of the nodes
of the input graph,

• a Hopfield associative memory [4], which determines whether the graph found by the first
net, is identical with or close to one of the prototype graphs.

The operation of the first network (termed "preprocessor") can be understood as follows: a
Hopfield -Tank optimizer with N2 neurons can be designed so as to find a permutation of N nodes
which minimizes the distance between a given graph and a graph produced by the permutation
of the nodes of the input graph. In other words, the network, left to evolve spontaneously, would
reach a state of minimum energy that codes for a permutation of the nodes of the input graph
mapping the latter onto a given graph. This operation is very similar to that used to solve the
traveling salesman problem, where the neural network is able to find a permutation of N towns
which minimizes the length of a tour.

The second network (termed "memory" network) is a standard associative net with N(N-1)/2
neurons; its synaptic couplings Jij are computed in such a way that the prototype graphs are
global energy minima of the network [5]. Once initialized in a state (coding for a graph), it will
evolve until it reaches a state of minimal energy; therefore, it has the ability to associate the initial
graph to one of the prototype graphs.

When both networks evolve simultaneously, they will both be driven to a state of minimal energy,
thereby,
i - finding, by operation of the preprocessor network, a permutation of the nodes of the input
graph,
ii - retrieving, by operation of the memory network, the prototype graph which is topologically
closest to the graph generated by application of the above permutation to the unknown graph.

2.2 Mathematical analysis

As stated above, the system consists of two coupled networks (the preprocessor and the
memory). In addition, a layer of input units (the receptor) is used for defining the input graph; it
has N(N-1)/2 units, each of them coding for the presence or the absence, in the input graph, of
an edge between two nodes. The nodes are numbered from 1 to N, and the state of the unit
coding for edge (ij) is denoted by Gij, which can take on the values 1 or 0, as described in the
previous section.

The memory network is designed to store and retrieve graphs which have the same
characteristics as those defined on the receptor layer: the N nodes are labeled from α = 1 to N;
the state of neuron sαβ codes for the presence (sαβ = 1) or the absence (sαβ = 0) of an edge
between nodes α and β. The N(N-1)/2 neurons in the memory interact through the Hamiltonian

HM(s) = ! 2s"# !1()J"#$% 2s$% !1()
",#,$,%

&

The synaptic couplings Jαβγδ are determined by a suitable learning algorithm from the graphs to
be learnt !"#

${ } .

In order to recognize isomorphic graphs, we have to compare two graphs, one of which - the
input graph G - is defined on the receptor, and the other one is encoded as the state {sαβ} of the
memory. In particular, we want to know whether there exists a transformation T which maps all

nodes of the graph described by {Gij} on the nodes of the graph defined by {sαβ}. These
transformations consist of all the different labelings of the N points of the receptor: each of them
can be represented by a (N, N) matrix tiα ∈ (0,1). Since one node i is mapped exactly onto one
node α, there is one and only one element equal to 1 in each row and in each column of T (see
Figure 2). In order to compare the topology of two graphs, one can use the minimum of their
Euclidean distance

D2
=minT d

2 s,T+GT()

=minT
1

2
s!" # ti! t j"Gij

i,j

$
%

&'
(

)*

2

!,"
$

Two graphs are isomorphic if D = 0.

In the present approach, the transformations are represented as states of neural activity: the
elements tiα of the transformation matrix are encoded into the states of the N2 neurons of the
preprocessor. The spontaneous evolution of the preprocessor leads to a state that is a minimum
of the function

HP = d2 s,T+GT() +Hpenalty
The last term is introduced to enforce the constraints

t
i!

!

" = 1 and t
i!

i

" = 1

Additional details are given in Ref. 2.

Recognition of isomorphic graphs is achieved by the combined action of the preprocessor and
the memory. During the learning phase, a set of prototype graphs Gij

!{ } is defined on the

receptor; each of them is transformed into a state !"#
$ of the memory network by:

!"#
$

= ti"
$ t j#

$ 2Gij

$ %1()
i,j

&

where each transformation Tν is arbitrary; the simplest choice is the identity transformation, so
that the graphs stored in the memory are identical to the prototype graphs; the choice of the Tν’s
will be discussed below. The projection rule [5] is used to store the patterns; if the latter are
linearly independent, it can be expressed as

J!"#$ =
2

N N%1()
&!"
'
Cµ'

%1&#$
'

µ,'

(

where

Cµ! =
2

N N"1()
#$%
µ #$%

!

$,%

&

and J!"!" = 0 .

After the network has learnt p patterns, it is presented with a graph G that is an isomorphism of
one of the stored graphs. In order to recognize the isomorphic prototype, the neurons of the
preprocessor and those of the memory are allowed to evolve simultaneously, thereby generating
isomorphisms of the input graph and retrieving one of the learnt patterns. The evolution of the
states {tiα} and {sαβ} is determined by the total Hamiltonian:

H = !d
2
s,T

+
GT() +HM s() .

The learnt graphs are the global minima of HM, and the distance d vanishes if the preprocessor
has found a transformation T that maps all nodes of the input graph G onto the nodes of the
graph represented by the state of the memory s. Thus, the global minima of H are given by

ti! t j"Gij

i,j

= s!" =
1

2
$!"
%
+1()

Therefore, an isomorphism is recognized if a global minimum is found.

2.3 Operational model

In this section, we introduce a variant of the above model, which we used for the simulations.
The motivation for this variant is twofold:

a) one problem with the above approach lies in the use of a Hopfield-Tank optimizer to find a
permutation of the nodes of the unknown graph. It is well known that such networks would be
potentially very powerful, by virtue of their massive parallelism [6], if they were actually
manufactured in silicon; however, there is only one known realization of such a network, and it is
unlikely that it will become widely available. Therefore, one has to perform computer simulations
that are extremely slow and make the whole thing impractical for networks of realistic size. In
order to avoid this, we consider a limiting case of the model: we take λ>> 1, so that states of the
memory network which are not isomorphisms of the input graph have a very high cost, hence
are very unlikely to occur; in the limiting case ! " # , the only possible states for the memory
network code for isomorphisms of the input graph, so that the energy which is minimized by the
system is given by:

 H = ! "#$J#$%&"%&

#,$,% ,&

'

with:

 !"# = ti" t j# 2Gij $1()
i,j

%

b) In addition to recognizing isomorphisms of the prototype graphs, we want the network to
perform error-correcting isomorphism: if the input graph differs from an isomorphism of a
prototype by some amount of random noise, we want the system to be able to recognize it.

In order to satisfy the above two requirements, we suggest a modified procedure which consists
of two steps:

1 - in a first step, a search is performed for a graph, isomorphic to the unknown one, which
minimizes the energy of the network. This minimization procedure should lead to a global
minimum, which corresponds to the isomorphism which minimizes the distance between the
transformed input graph and one of the prototype graphs; if the final energy is that of a prototype
graph, the procedure stops;

2 - if no prototype graph is found, the neural network is initialized in the state coding for the
graph found in the previous step, and left to evolve under the usual neural dynamics, without
restrictions on the state of the neurons: if the state found by the previous search is not very
different from one of the prototype graphs, the network will reach one of the global minima,
which will be the prototype which is topologically closest to the unknown graph.

Thus, the two steps are distinguished by the dynamics of the network: in the first step, the states
are restricted to isomorphisms of the input graph, whereas, in the second state, no such
restriction exists.

3. SIMULATIONS

Step 1 can be carried out by any suitable iterative search procedure; the simulations presented
here use simulated annealing [7], with parameter settings as in Ref. 8. The elementary move is
the exchange of two nodes of the graph. Step 2 uses a neural network with sequential
dynamics.

The prototype states used in the following experiments are shown on Figure 3. They have a
maximum of 9 nodes, and represent a variety of topologies for planar and non-planar graphs. It
is known that the error-correcting abilities of a neural network are improved if the Hamming
distance between the stored patterns is large. In order to increase the distance between the
stored patterns that code for the graphs, we first transformed the prototypes by applying to the
nodes of each prototype !" a random permutation Tν. A random permutation is a simple choice,
presumably not an optimal one. Note, however, that the basins of attraction of the whole system
are not governed by Hamming distance alone (see the following discussion).

3.1 Recognition of isomorphic graphs
In a typical set of experiments, fifty unknown graphs, all of them isomorphic to graph G1, were
generated. All fifty graphs were presented as inputs to networks whose neurons encode the
links of a lattice of N points, and in which we stored p prototypes the following combinations
were investigated: N=9, p=6; N=9, p=12; N=12, p=6; N=12, p=l2. Under all these conditions the
fifty graphs were successfully recognized through step 1 alone.

3.2 Discussion-
There are special cases, resulting in failures, which raise an interesting question: what kind of
local minima can be reached, and how difficult is it to escape from them and retrieve a ground
state? A good illustration is observed when one presents an isomorphism of G4 as an input. In 9
runs out of 50, the net with N=12 fails to identify G4, whereas it learned G1 to G9 or G1 to G11. In
6 failures out of 9, the best match found by the system was G2. This is not surprising since G4 is
a subgraph of G2. Consider, for example, a rotated version of G4 as the input (Figure 4). To
escape from this state, three two-point exchanges that increase the energy should be accepted
in sequence; conversely, if four-point exchanges were allowed, only one energetically
unfavorable elementary move would be needed; if eight-point exchanges were allowed, this
state would no longer be a local minimum.

The above example shows a particularly difficult case, because the input has eight possibilities
to become a subgraph of G2 and only two possibilities to match G4. These results do not depend
on the number of stored prototypes (within the range of parameters in our simulations), provided
no new supergraph is introduced; however, if G12 is stored, then isomorphisms of G4 are likely to
be identified as G12. Again, there are eight possibilities for G4 to be a subgraph of G12
There are also local minima that do not correspond to supergraphs, but have very small optimal
distances. In the above example, G5 is a good candidate, with D2(G5, G4) = 2.

3.3 Recognition of non-isomorphic graphs
In these experiments, the unknown graphs are isomorphisms of one of the prototype graphs,
with extra edges or missing edges. We studied in detail networks with N=12 and p=6, 9, or 12.
The error-correcting properties of the system depend strongly on the number of stored
prototypes. If 6 prototypes are stored, adding 3 or 4 edges leads to 100 % correct recognition. If
7 edges are added, 80% success is still achieved. An example of error correction is

Figure 3
Twelve graphs stored as fixed points in the memory network.

shown on Figure 5. As expected, error correction becomes less efficient it the number of
prototypes is increased this is due only in part to the classical saturation phenomenon
observed usually in neural networks: it is also due to the fact that, as more prototypes are
added, there is a greater probability that some of them are topologically close to each other. As
an illustration, consider the following example: we stored the first 9 graphs in the network; it
was presented with isomorphisms of graph G with edge 3-5 missing; the network identified
them as G7 in 7 cases out of 50. When we added an edge instead of deleting one, this
happened 8 times out of 50: this is due to the fact that graph G7 is the prototype graph that is
closest (in terms of the distance between graphs) to G1.

Figure 4

(a) A possible input G. The arrows indicate a four-point permutation leading to the graph shown
in (b). This configuration represents a saddle point, from which the system can reach the global

minimum shown in (c) by another four-point permutation. (d) A possible input G, which is an
isomorphism of G4 but has a small distance to G12, which is a supergraph of G4.

Figure 5

a) Input graph, which is an isomorphism of G1, with 2 missing links. b) Stable
state reached by simulated annealing. c) State reached by the memory network:

prototype graph G1.

3.3 Conclusion

The above results show that the simulated network model can generalize quite successfully
over equivalent topologies. Even when it fails to recognize the correct isomorphism, it
nevertheless identifies a graph that is topologically close to it. In this sense, the very failures
correspond to a generalization over topological features - albeit an incomplete one. The rate of
failures as well as the recognition times were found to depend strongly on the prototypes and on
the input. A systematic assessment of the capabilities of the system will be possible only by
investigating special classes of graphs.

4. CONCLUSIONS

The present paper shows that neural networks have the ability to handle structured data, so that
they can be used for high-level processing; we prove experimentally that graph recognition can
be achieved this may have an impact in various fields where graph recognition is important
picture processing, scene analysis, description of chemical structures, relational database
systems, switching theory, etc. It must be pointed out, however, that the procedure which is
presented here is by no means optimized, and that a number of variations and improvements
must be investigated among these are the use of alternative optimization conditions (exchanges
of more than two nodes, constant-temperature operation), alternative optimization algorithms (is
simulated annealing the most appropriate search method for this problem?), and alternative
learning rules.

Furthermore, the simulations that were performed were restricted to a special case of a more
general network for graph recognition; this choice simplifies the simulation to a great extent and
makes error-correcting isomorphism possible, but it may not be optimal. The performances of
the system should be investigated in the full space of the parameters that specify the
architecture. It should also be noticed that the problem of graph recognition is treated here in a
completely general way: the method can be applied to any non-labeled graph subjected to any
topology-conserving transformation. For practical applications, this may be too general: some
special classes of graphs, or some special transformations only may be of interest However
preliminary the present results, the approach suggested here is promising because it may

be expected to open a new class of applications for neural networks.

ACKNOWLEDGEMENTS

We would like to thank D. Amit, A. Treves and R. Kree for many interesting discussions; part of
this work was carried out at the Institute for Advanced Studies at the Hebrew University of
Jerusalem, to which we are very grateful for its hospitality.

This work was supported by the BRAIN (Basic Research in Artificial Intelligence and
Neurocomputing) initiative of the Commission of European Communities.

REFERENCES

1 See for instance: K.S. Fu, Syntactic Pattern Recognition and Applications (Prentice-Hall,
1982)
2 R. Kree, A. Zippelius, J. Phys. A 21, L813 (1988).
3 J. J. Hoptield, D. Tank, Biol. Cybernetics 52, 141 (1985).
4 J. J. Hopfield, Proc. Nat. Acad. Sci. 79, 2554 (1982).
5 L. Personnaz, I. Guyon, G. Dreyfus, Phys. Rev. A 34, 4217 (1986).
6 L. D. Jackel, R.E. Howard, H.P. Graf, B. Straughn, J.S. Denker, J. Vac. Sci. Technol. B 4, 61
(1986).
7 Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Science 220, 671 (1983).
8 P. Siarry, L. Bergonzi, G. Dreyfus, IEEE Trans. on Computer-Aided Design 6, 211 (1987).

