Silicon Architectures for Neural Nets, M.G. Sami, ed. (Elsevier, 1991).

Design and Implementation
of a Dedicated Neural Network
for Handwritten Digit Recognition

Pierre-Yves Alla, Gabrielle Saucier
CS], Institut National Polytechnique de Grenoble,
46, avenue Félix Viallet
38031 Grenoble, France

S. Knerr, L. Personnaz, G. Dreyfus
Ecole Supérieure de Physique et de Chimie Industrielles
de la Ville de Paris (ESPCI)
Laboratoire d'Electronique
10, rue Vauquelin
75005 Paris, France

Abstract

The automatic recognition of handwritten digits seems to be one of the most
promising fields for applications of artificial neural networks; various studies have
shown that good recognition rates can be obtained on large "real-world” data bases.
This paper presents (i) the design of a network architecture, resulting from a
stepwise procedure developed at ESPCI for simultaneously building and training a
neural network, intended for the automatic recognition of isolated handwritten
digits and (ii) a silicon implementation of that network, using a general-purpose
neural circuit architecture developed at CSI.

Introduction

Since the early days of the development of neural networks, the applicability of these
systems to automatic character recognition has been extensively studied by various
research groups. Clearly, this field is among the most promising for applications of
neural networks, and various prototypes are operating satisfactorily.

The present work reports a collaboration between two research groups with different

but complementary scopes:

- the Laboratoire d'Electronique of ESPCI, which has been investigating extensively
the automatic recognition of handwritten digits by neural networks, and has
developed a new procedure which simultaneously builds and trains a neural

network classifier; in the present paper, we describe the procedure and its
application to the recognition of handwritten digits, together with the network
structure which was the outcome of the procedure,

- the Laboratoire de Conception de Systémes Intégrés (CSI), where a general-
purpose silicon architecture has been developed which allows the
implementation of virtually any neural network structure; this architecture is
used to implement the network proposed by ESPCL

The circuit is intended to perform the automatic recognition of handwritten isolated
digits, normalized to 256 pixels with 16 gray levels. Hence, the preprocessing steps
(which may include segmentation, in the case of unconstrained postal codes, for
instance) are reduced to well-known operations which can be carried out by various
classical techniques that shall not be described here.

The stepwise building and training procedure

At present, training algorithms, such as backpropagation, start from a fixed network
architecture which has to be determined in advance by guesses, possibly guided by a
priori knowledge on the problem, leading to constrained structures [Ham90, LeC89].
In addition, backpropagation tends to be time-consuming even when used to train
networks of small size. The basic idea of the stepwise procedure (and of procedures
in the same spirit suggested by other authors [Méz89, Utgs9]) is to produce a network
structure which is matched to the complexity of the classification problem it is
intended to solve, by simultaneously building and training the neural network. The
resulting network has a single layer of adaptive connections between the inputs and
the first layer of binary neurons, and additional layers which perform boolean
operations. Therefore, training is fast since it is performed on one layer of
connections only, and the hardware implementation is relatively straightforward
since the neurons have binary outputs.

The building and training procedure consists of three steps: .

- in a first step, the procedure attempts to separate the examples of each class linearly
from all others; this results in successful neurons, which are kept, and in
unsuccessful neurons, which are discarded;

- in the second step, the procedure attempts to separate linearly the pairs of classes
which were not separated during the previous step; again, the resulting successful
neurons are kept, whereas the unsuccessful ones are discarded;

- in the third step, the classes which are still not separated (either because they are
non-linearly separable, or because they are overlapping) are separated pairwise by
pi;ecewise linear decision surfaces.

Piecewise linear separation surfaces are generated as follows [Kne89]: starting out

with one neuron which divides the input space into two regions, there exist
misclassified examples in at least one of these regions (otherwise, the two classes
would have been separated successfully in step two of the procedure). Then, in each
region containing misclassified examples, a neuron is generated to separate the well
classified examples from the misclassified examples. Iterating this procedure, the
problem is split up as in a classification tree [Bre84], resulting in a decision surface of
increasing complexity. Neurons are added until cross-validation shows that the
generalization ability is no longer improved. In order to simplify hardware
implementations, the tree structure can be transformed into a simple network by
adding two layers of boolean functions.

Steps (1) and (2) make use of the generalized delta rule [Kne89], while step (3) uses
the Perceptron Pocket algorithm [Gal86]. In the first two steps, training requires
neurons with sigmoidal nonlinearities, whereas binary neurons are used in the
classification phase. The last step might be carried out with multilayer networks
trained by backpropagation to separate the remaining classes (in that case, the
separation surfaces would not be piecewise linear).

A Handwritten Digit Recognizer

The above procedure was applied to build and train a network for handwritten digit
recognition. The data base used for training and testing the network consists of 8700
unconstrained handwritten digits (870 per class). The binary images from an optical
scanner were normalized to 16 x 16 pixels with 16 gray levels. Some examples of the
data base are shown on figure 1.

AA 4L IV 4474 S§B5ST oy G
ANAA 17/ 44 66 €66 (6 E K
2222t 9220 VP FTIRTT
2720027277 9 88 RE §1 V8PP
33 2522 85313 33 9§99 9923
b 44 4y fy vy OCOCQO0 (0 °0

Figure 1: Samples from the data base used for generating the network. For each pair
of digits, the left one is the original and the right one is the normalized digit.

It turned out that the stepwise training procedure stopped after the second step,
thereby indicating that the classes of the training set are pairwise linearly separable.

Thus, the resulting architecture of the network is very simple (figure 2): a single
layer of 45 neurons is fully connected to the 256 four-bit inputs, representing the
16x16 pixel images. The final decision is made by 10 AND gates, connected to 9
neurons each.

45 neurons

11 565 coefficients

binary outputs

eotassspnsssopemcsssscesioont adaptive connections

Figure 2: Network architecture

In order to assess the performance of a classifier, three figures of merit must be
considered: the number of well classified items, the number of errors (misclassified
items), and the number of rejected (non classified) items. For many applications, it is
more important to minimize the number of errors, than to maximize the number of
well classified items, the price being a higher rejection rate. Therefore a realistic
recognizer should implement a flexible rejection mechanism. In order to achieve
this, the values of the potentials are taken into account for the final decision, made
by the AND gates: a small absolute value of a potential indicates an ambiguous
situation. Figure 3 illustrates the neuron (i/j), separating class i from class j and the
rejection mechanism: each neuron compares its potential V; /j) to a common
threshold ©; the two binary outputs (i/j)j and (i/})i are then:

if V(i/j)<'® , then (i/j)j=1 and (i/})i=0 ;
- if V(i/j)>®' then (1/])]=0 and (i/j)i=1 ;
- if | V(i/j) | <@ then (i/j)j=(i/})i=0; indicating an ambiguous input pattern.
The final decision of the network is as follows:
- if (i/)i=1 for all j, the output of the AND gate "i" is one, and the input pattern is
assigned to class i ;
- if all AND gates have zero outputs, the input pattern is rejected.

A low threshold results in a high percentage of well classified examples, whereas a
high threshold yields a low error rate.

4 outputs of
neuron (i/j)

[
]
i
'

-
l
1

G/pi

blesrrsroas
=)

6 VG/p

1 2 3 254 255 256

Figure 3: Neuron (i/j) and rejection mechanism

Table 1 shows simulation results obtained with the network which was trained on
half of the data base and tested on the other half of the 8700 digits. The first row gives
the results on the training set, indicating that the data was learned almost perfectly.
The results of the second, third and fourth row were obtained on the test set with
coefficients stored on 32 bit (floating-point arithmetics), 6 bits and 4 bits (integers)
respectively. The threshold ® was chosen to set the misclassification rate to 1 %.
Clearly, there is no substantial decrease in performance when the precision of the
coefficients is brought down to 6 bits. The moderate memory requirements facilitate
greatly the implementation of the network.

w.C. rej. m.c.
training set 9.5 % 0.3 % 02 %
test set, 32 bits 96.0 % 3.0% 1%
test set, 6 bits 95.7 % 33% 1%
test set, 4 bits 93.8 % 52 % 1%

Table 1: Simulation results on a 8700 digits data base
(w.c. = well classified, rej. = rejected, m.c. = misclassified)

We also compared these results to those obtained by multilayer perceptrons, trained
with backpropagation. Using an unconstrained architecture with one hidden layer

and an optimized number of hidden units, the best results came close to those
shown in Table 1.

A general purpose implementation

A neural network architecture in the spirit of a dedicated silicon compiler has been
developed at the LCSI [Oua89]. This architecture is based on the replication of a basic
computing element (the "neural processor"). Training is performed on a host
computer and the coefficients of the network are loaded onto the chip. In the
following, the implementation of the previously described network with the LCSI
architecture is presented. First, the structure of an individual neuron is described
and then the network architecture is discussed.

The neuron

The main idea is to design a single neural processor, with an autonomous control, a
local memory to store the coefficients, and identification registers which contain the
necessary information about the global architecture of the network.

The processor itself is simple and can be divided into two parts. The first part
computes the potential, and the second part performs the nonlinear function and
the rejection mechanism, based on the potential V(i/j) and on the rejection
threshold ® which can be loaded from outside. The mutiplication of the inputs by
the corresponding coefficients is performed using the classical Booth algorithm. The
adder/subtractor required by this algorithm is also used to accumulate V(;) and to
perform the rejection thresholding.

Since the two outputs of the neuron are binary, they are not transferred through the
busses, but they are directly transmitted to the host computer from the controller.
Therefore, there is no need for an output register. Figure 4 shows the design of a
neural processor.

high bus L

Y Local Memory for Coefficients l

Input l
Register
ALU
Identif. >
y Register
T 3 output (i/ji
Controller e
low bus output (/)]

Figure 4: The neural processor for classes (i/})

Data is encoded on 4 bits (positive integers), and coefficients are encoded on 6 bits.
Simulations have shown that the potential never exceeds the value of 5000;
therefore, the accumulator is only 13 bit wide. The busses must be 6 bit wide, to be
able to load the coefficients into the memories.

The network

The CSI architecture [Oua89] has been designed to allow the implementation of a
wide variety of neural network structures. In order to reduce connection costs, the
first layer of the network is organized in 4 rows of 12 neurons each (figure 5), each
row lying between two bus segments. As mentioned above, only 45 neurons are
required for the first layer, but the 48 neuron structure allows a more regular design.
The first layer is folded into two columns of bus segments in order to ease the
circulation of the data. The principle of operation is the following: 8 inputs are
entered in parallel, and all the neurons attached to the same bus segment operate on
the same input, at a given instant of time. At the next time step the data circulates
via the neurons in the direction indicated by the arrow. Within 8 time steps each
neuron operated on each of the 8 inputs; then the next 8 inputs are entered. Thus,
the 256 pixels of the pattern are input in 32 packets.

This architecture may not be optimal for the discussed application, but the
constraints that it imposes on the design are easily manageable. The original
structure was supposed to implement a multilayer network with sigmoidal
nonlinearities. Since, in the present case, the outputs of the neurons are binary, the
busses are not needed to broadcast the outputs to the layer which performs boolean
AND functions; therefore the busses will only be used to supply the neurons with
the data and to load the memories. As a result, the busses need not be managed once
all the data has been loaded.

bus neurons

e
000000 00000 .
—__ 000000 O000O08 e
e 000000 000000 .
000000 000000

irculation of data s«

P S

L] i 1

first column of neurons second column of neurons

Figure 5: The stucture of the first layer and data circulation therein

The second layer, which is composed of 10 AND gates with 9 inputs each, is not
implemented using the "neural processor”. In a first version of the classifier, the
1-bit outputs are broadcasted to the host computer, where the final part of the
classification will be implemented in software.

The chi

The cir(ilit has been designed using VLSI Technologies Inc. software. The "neural

processor" can be divided into three parts as follows: ’

- the operative part, which contains the ALU, the inputs and the identification
registers. This part is generated with a Data Path Compiler.

- the controller, described as a state machine, and generated by the State Machine
Compiler.

- the local memories of 256 6-bit words.

The size of one neuron is smaller than 3 mm?2, with a 1.2 micron technology. This
allows an implementation of 24 neurons on one chip. Thus, the complete first layer
of the network fits on two chips. ROMs instead of RAMs could be used for the local
memories in order to implement the whole network on one chip. In this case the
coefficients of the neural network are fixed once and can not be changed when
dealing with different data bases.

The time needed to classify one input pattern can be estimated to be 2600 cycles, with
a theoretical minimum cycle time of about 50 ns. Therefore, the on-chip recognition
time for one digit can be estimated to be approximately 130 ps.

Conclusion

A dedicated neural network for handwritten digit recognition has been designed and
is being implemented in silicon. The final network will be a set of two chips with 45
binary neurons, performing the classification in parallel. The method requires a
minimal amount of preprocessing.

This work showed:

(i) the effectiveness of the stepwise building and training procedure in producing
simple but efficient networks adapted to real-world classification problems,

(i) the flexibility of a general-purpose architecture, in the spirit of a "neural” silicon
compiler, for the implementation of a dedicated network architecture.

A hardware implementation of the preprocessing tasks will be considered in the
future.

Acknowledgments: this work was supported in part by ECE contract ST2J 0312C, by
the G.CIS of CNRS, and by the PRC "Architectures de Machines Nouvelles".
The authors are grateful to D. Urbani for simulation work on the character data base.

References

[Bre84] L. Breiman,]. H. Friedman, R.A. Olshen, C.J. Stone: "Classification and
Regression Trees", Wadsworth International, 1984.

[Kne89] S. Knerr, L. Personnaz, G. Dreyfus: "Single-layer Learning Revisited: a
Stepwise Procedure for Building and Training a Neural Network”, NATO
Workshop on Neurocomputing, Les Arcs, France (February 1989).

[Galg6] S.I. Gallant: "Optimal Linear Discriminants", 8th International Conference
on Pattern Recognition Vol. 2, 849, Paris, France, 1986.

[LeC89] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard,

L.D. Jackel: "Backpropagation Applied to Handwritten Zip Code
Recognition”, Neural Computation 1, 541-551, 1989.

[Ham90] J.B Hampshire, A.H. Waibel: "A Novel Objective Function for Improved

Phoneme Recognition Using Time-Delay Neural Networks", IEEE Trans.
on Neural Networks 1, 216-228, 1990.

[Oua89] J. Ouali, G. Saucier: "A Distributed Architecture for Neural Networks Based

[Méz89]

[Utg89]

on a Neural Processor”, 2nd International Workshop on Neural Networks
and their Applications, Nimes, France, November 89.

M. Mézard, J.P. Nadal: "Learning in Feedforward Layered Networks: the
Tiling Algorithm", J. Phys. A 22, 2191-2203, 1989.

P.E. Utgoff: "Perceptron Trees: A Case Study in Hybrid Concept
Representations”, Connection Science 1, 377-391, 1989.

