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Abstract

Discrimination of Ventricular Tachycardia (VT) from
Supra-Ventricular Tachycardia (SVT) remains a major
challenge for appropriate therapy delivery in Implantable
Cardioverter Defibrillators (ICDs), especially in single
chamber devices. We propose here a new discrimina-
tion algorithm that analyzes, with a machine learning ap-
proach, the morphology of a two-dimensional representa-
tion of both a far-field and a near-field ventricular sensing
channel. Features extracted in this representation allow
comparisons between curves. Thus, arrhythmia discrimi-
nation is performed by comparing an arrhythmia curve to
a reference curve.

A statistical classifier was trained on a private database
and tested on the standard Ann Arbor Electrogram Li-
braries. Our discrimination algorithm demonstrated high
sensitivity and specificity for VT/SVT discrimination. The
requirements of this algorithm make it appropriate for im-
plementation in the simplest ICD system.

1. Introduction

Discrimination of Ventricular Tachycardia (VT) from
Supra-Ventricular Tachycardia (SVT) remains a major
challenge for appropriate therapy delivery in Implantable
Cardioverter Defibrillators (ICDs), especially in single
chamber devices where the atrial signal is not available.
Unlike SVT, VT is a life-threatening arrhythmia that may
lead to sudden death unless an appropriate shock is deliv-
ered. Conversely, inappropriate shocks are very painful
and stressful for patients and can also trigger a life-
threatening tachyarrhythmia. The Madit II study [1] shows
that inappropriate shocks occurred in 11.5% of the prophy-
lactic ICD (single and double chamber devices) patients
and accounted for 31.2% of the total shock episodes. There
is clearly a need for further improvements in arrhythmia
discrimination.

The discrimination in ICDs is performed from endocar-

dial measurements of the electrical activity of the heart,
named electrograms (EGMs). Historically, only time in-
tervals extracted from EGMs were used for the diagnosis.
In the last decade, an additional analysis of the shape of
a single EGM channel resulted in improved performances
[2–4]. We propose in this paper a morphology discrimi-
nation algorithm based on a new two-dimensional repre-
sentation of both a far-field and a near-field right ventricu-
lar sensing channel, available in standard ventricular leads
(Figure 1).

Figure 1. The simplest ICD system: a single-chamber ICD
with a single-coil lead. The distal (RVtip) and the proxi-
mal (RVcoil) electrode are positioned in the right ventri-
cle, the can is implanted in the left sub-clavicular position.
The two EGM configurations used in this study are RVcoil-
RVtip and RVcoil-Can.



2. Methods

2.1. Overview of the algorithm

The algorithm is based on the comparison between a
Normal Sinus Rhythm (NSR) template beat and an ar-
rhythmia beat (Figure 2). The NSR beat is commonly ob-
tained by averaging m consecutive slow beats. A morpho-
logical description of this reference beat is subsequently
computed based on a new two-dimensional representation.

When an arrhythmia is detected, the cardiac cycles are
described in the same way as the reference beat. Morpho-
logical features are computed in order to compare each ar-
rhythmia beat to the reference. The decision is based on
a statistical classification of these features together with
rhythmological features.

Figure 2. Overview of the morphology algorithm

2.2. SPOT curve representation

The two-dimensional representation of EGMs is called
“Spatial Projection Of Tachycardia”(SPOT). The SPOT
curve of a cardiac cycle is the plot of the amplitude of the
far-field sensing signal versus the amplitude of the near-
field sensing signal, with time as a parameter. However, a
SPOT curve does not correspond to the entire cardiac cy-
cle, but to a significant portion of a heart beat centered on
the R wave (typically 80 ms).

Figure 3 shows three SPOT curves for the same patient,
one during an NSR, one during a VT and one during an
SVT. Our discrimination algorithm consists of comparing
each arrhythmia SPOT curve with a reference one. The
underlying assumption is that, for a given patient, the mor-
phology of an SVT SPOT curve is similar to that of the
reference curve constructed from normal EGMs, while the
SPOT curve for a VT is significantly different: this is justi-
fied by the fact that the electrical signals pertaining to nor-
mal heartbeats and to SVT heartbeats originate from the
atria and follow the same electrical conduction pathway to
the ventricles, while VT electrical signals, originating from
the ventricles, have a different activation pattern, leading to
a change in the morphology of the signals measured by the

electrodes. Figure 3 illustrates this phenomenon: the SVT
SPOT curve is similar to the reference SPOT curve up to a
scale factor, while the VT SPOT curve is very different in
direction and shape.

Figure 3. Three SPOT curves for a single patient. EGMs
were sampled at 500 Hz.

2.3. Description of a single SPOT

For implementation in an ICD, a simple and inexpensive
method is required to describe a SPOT curve. As can be
seen in Figure 3, a difference in direction or shape is a dis-
criminant factor. Therefore, two geometrical descriptors
are extracted from each curve in this new representation:
the velocity vector and the curvature at each point. Let
b(t) be the amplitude of the bipolar near-field signal at time
t and u(t) the amplitude of the unipolar far-field signal at
time t. Velocity vectors are obtained by using a discrete ap-
proximation of the derivatives at each point for each EGM
channel. We denote by u′ and b′ the time derivatives of u
and b respectively. Let V (t) = (b′(t), u′(t)) be the veloc-
ity vector of a SPOT curve at time t.

The Euclidean norm of each velocity vector V (t) is
computed as:

N(t) =
√
b′2(t) + u′2(t)

Second derivatives are computed similarly to first
derivatives. The curvature, which is the inverse of the ra-
dius of curvature, is then computed as follows:

C(t) = (b′(t)2+u′(t)2)
3
2

u′′(t)b′(t)−b′′(t)u′(t)

The curvature can increase dramatically, especially at
points where the velocity is small. For that reason, a
weighted curvature Ĉ is used. The weight at time t cor-
responds to a power of the velocity N(t).

Figure 4 illustrates this description based on the SPOT
curves of Figure 3: each SPOT curve is described at each



point by the direction of the velocity vector (Figure 4a), its
norm (Figure 4b) and the weighted curvature (Figure 4c).

Figure 4. Description of SPOT curves

2.4. Comparison between arrhythmia and
NSR SPOT curves

In order to discriminate between VT and SVT, a com-
parison between each current arrhythmia SPOT curve and
the reference SPOT curve must be performed. Therefore,
three candidate features are computed from the previous
descriptors.

The first feature is the average angle of the relative ve-
locity vectors AngV . The angle α(t) of the relative veloc-
ity vectors at time t is given by:

α(t) = arccos
(
< Vref (t), Vtest(t) >
Nref (t)Ntest(t)

)
= arccos

(
b′ref (t)b

′
test(t)+u

′
ref (t)u

′
test(t)

Nref (t)Ntest(t)

)
where 0 < α(t) < π.

Let n be the number of points of each SPOT. Then,
AngV is defined as:

AngV = 1
n

n∑
t=1

α(t)

It is known that electrodes inside the heart are essentially
motionless, so that a rotation between two SPOT curves is
a discriminant factor. Such a rotation would be reflected
by AngV .

The correlation coefficient between the norms of the ve-
locity CN is the second descriptor:

CN =

n∑
t=1

Nref (t)Ntest(t)

‖Nref‖‖Ntest‖

Finally, the correlation coefficient between the curva-
tures CC can be computed as:

CC =

n∑
t=1

Ĉref (t)Ĉtest(t)

‖Ĉref‖‖Ĉtest‖

The amplitude of the signal may vary, so that the rep-
resentation must be size-invariant. The correlation coeffi-
cient complies with this requirement.

2.5. Arrhythmia discrimination with a ma-
chine learning approach

As illustrated by previous clinical trials, morphology
algorithms combined with rhythm discriminators perform
better than morphology algorithms alone. For that reason,
two additional timing descriptors are added to the set of
features: the cardiac frequencyBPM and the standard de-
viation StdRR of the RR intervals during the arrhythmia,
estimated from a few cycles preceding the current cardiac
beat.

A statistical classifier is subsequently trained on a set
of arrhythmias. In order to reduce the complexity of the
classifier (critical when the training set is small), a feature
selection is performed to discard non-informative features.
First, features are ranked by Gram-Schmidt orthogonaliza-
tion [5, 6]. Then, the random probe method [7] provides
an estimate of the probability for a feature to be irrelevant,
and allows keeping the probability of false positive (i.e.
the probability of keeping a feature although it is not in-
formative) below a predetermined limit. This results in the
selection of p features.

The classifier is intended to divide the feature space
into two regions, providing the equation E(x) = 0 of
the boundary surface, where x is the feature vector whose
components are the values of the selected features. The
value of sgn(E(x)) indicates whether the beat described
by vector x belongs to one class or the other. This pro-
cedure is an offline procedure and is done only once on
a fixed training data set. Then, only the equation of the
boundary surface is downloaded into the ICD in order to
compute sgn(E(x)) for each beat when an arrhythmia is
detected.

A robust type of statistical classifier is used: a Support
Vector Machine (SVM) classifier [8] with a gaussian radial
basis kernel. In this case, the equation of the hyperplane is
given by:

E(x) =
l∑
i=1

αi exp
(
− (‖xi−x‖2)

2σ

)
+ b = 0



where l is the number of support vectors; xi are the p-
dimensional support vectors; αi and b are parameters esti-
mated by the statistical learning; and σ is a fixed parameter
chosen by model selection. The arrhythmia is classified as
SVT if E(x) < 0, as VT otherwise.

3. Results

Electrograms from two different databases were used in
this study. All arrhythmias were induced during electro-
physiological studies. The sampling rate used for evalua-
tion was 500 Hz.

Feature selection, model training and model selection
were performed from a private database including 29 in-
duced VT and 19 induced SVT from 32 patients (57± 15.5
years, 87.5% men, 50% Ischemic Heart Disease). With a
risk of keeping a feature although it is irrelevant of 10%,
AngV , BPM , CN and StdRR are selected among the
five candidates. The procedure provided a classifier with
96.6% sensitivity (1 FN) and 94.7% specificity (1 FP) on
that database. It was tested on the standard Ann Arbor
Electrogram Libraries (AAEL): 64 VT and 7 SVT from
41 patients (61.9 ± 13.2 years, 82.9% men, 73.1% Coro-
nary Artery Disease). On those fresh data, the classifier
had 96.9% sensitivity (2 FN) and 85.7% specificity (1 FP).
Results are shown in table 1.

It is important to notice that the entire arrhythmia
databases could not be used because a spontaneous sinus
rhythm was not available for every patient.

Table 1. Performances of the SVM classifier

Sensitivity Specificity
% (FN) % (FP)

Training Set 96.6 (1) 94.7 (1)
Test Set 96.9 (2) 85.7 (1)

4. Discussion

4.1. Limitations

The problem of template updating was not addressed
yet but we did check the posture-invariance of our rep-
resentation. Recordings of NSR were performed for two
patients in different postures (sitting, standing, supine,
prone, left/right lateral decubitus). These preliminary re-
sults show that our features are independent of posture.
However, more recordings must be analyzed for substanti-
ating that claim.

Another limitation is the fact that all arrhythmias used
for validation were induced. Therefore, the criterion of
sudden onset could not be evaluated.

Finally, there is, unfortunately, no standard database for
comparing our algorithm to other morphology algorithms.

However, the simultaneous use of two different types of
EGM guarantees a gain of information compared to other
algorithms.

4.2. Conclusion

The SPOT-based discrimination algorithm, applied to
standard databases of tachyarrhythmias, demonstrated
high sensitivity and specificity for VT/SVT discrimination.
According to this study, velocity vectors seem to be suffi-
cient for morphological characterization of SPOT curves.

The computational requirements of this algorithm make
it appropriate for implementation in every ICD system
within the framework of a prospective clinical evaluation.
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