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Abstract 
We describe a new algorithm for the estimation of Cycle Lengths (CL) in the atria. In the spirit of wavelet 

transforms, the algorithm correlates the EMG signal to a set of functions that are specifically designed to extract 
the cycle length present in the signal. This provides a CL vs time map, which is a highly informative 
representation of the electrical activation of the tissue. Subsequently, the information from this map is 
compressed into a histogram that unravels the distribution of the dominant CLs on a given time window. Finally, 
a sliding window tracks automatically the changes in CLs over a large time scale. Results on both synthetic and 
real data are presented. The correlation with known cycle lengths in the synthetic cases is strong, and the CL 
distributions on real data are similar to those obtained from manually annotated EGMs.  
 

1. Introduction 
Catheter ablation is a common treatment for atrial fibrillation. During the procedure, endocardial electrograms 

(EGM) are recorded in various locations of the atria and analyzed by the physician in order to decide whether 
ablation must be performed or not. Traditionally, the mean cycle length is extracted from EGMs as an estimate 
of the mean duration between two consecutive activations in the tissue. It turned out to be a valuable guideline 
during the procedure: when measured in a fixed location (coronary sinus or left appendage for example) its value 
greatly increases after the ablation of a site involved in sustaining the atrial fibrillation (AF), and conversely, 
does not change after the ablation of an inactive site [Haissaguerre].  

During the procedure, the CL is usually computed from a bipolar filtered signal. More recently, the value of 
the CL was correlated to the dominant frequency of the signal; therefore, the Fourier Transform is also used now 
[Everett][Sanders][Takahashi].  

In this paper, we present a new wavelet-like algorithm for the estimation of the Cycle Lengths (CL) in the 
atria. Section II describes the generation of time vs CL maps, and their transformation into a histogram to exhibit 
the dominant CLs on a given time window. In section III, comparison with Fast Fourier Transform is first 
presented on synthetic signal, and results on real data are compared to manually annotated EGMs. Results are 
discussed in the final section. 

2. Methods 
2.1 Wavelet transforms 

The wavelet transform is based on the computation of the inner product of a function with shifted and scaled 
versions of a ‘mother’ function. Very frequently, the mother functions are oscillatory in nature, so that dilations 
result in frequency changes, and shifts result in time shifts; the values of the correlations computed in given time 
and frequency ranges are usually plotted in the form of a time-frequency map. 

In the present work, we focus on cycle lengths instead of frequencies; therefore, we design a “mother 
function” ΦN that is suitable for our purpose, and we compute the correlation function of a signal x(t) with the 

mother function as 
 
CN T( ) = x t( )! N t + T( )dt
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 , expressing the similarity between signal x and the mother 

function. Therefore, in order to avoid using the term ‘mother function’ too loosely, it will be termed ‘template 
function’ in the following. 

2.2  Template Function  
The template function used here is equal to the sum of two identical Gaussian functions separated by N ms 

(Figure 1): 
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The width σ is fixed and the time interval N between the Gaussians is a parameter. 

 
Figure 1: Mother function used for CL measurement.  

Let s be an EGM signal. The correlation between its power s2 and the i-th template function, with parameter 
Ni, is thus given by:  
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It can be written as: 
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where G(T) is the correlation function of the signal s2 and the Gaussian function ( −T, σ): 
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Thus, if the spikes in s(t) are identical, the value of 
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 is maximum when G(T − Ni /2) and G(T + Ni/2) are 

simultaneously maximum. This occurs when the time interval between two consecutive depolarisations of the 
tissue are separated by a time interval of Ni ms. i.e. when the cycle length is equal to Ni. Consequently, the values 
of Ni chosen for the analysis are equal to the values of CLs to be analyzed, 
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 being specific of a CL of Ni ms. 

In usual cases, a set of 101 template functions is used, corresponding to cycle lengths in the range 120-220 ms 
with a 1ms resolution.  

The decomposition over the whole basis can be represented as a CL vs. time map where the values along the 
z-axis represent the normalized values of coefficients CN (Figure 2). 

 
Figure 2: (Top) Synthetic EGM with three known CLs: 200 ms for the first two CLs and 180 ms for the third 
one. (Bottom) Values of 

 
C

N
T( )  for N between 120 ms and 220 ms in a 500 ms time interval. High values (in 

white) correspond to the onset of a cycle at a given time: the first two white spots correspond to the onsets of the 
first two 200 ms cycles and the third one to the onset of a 180 ms cycle.  

 

2.3 From CL vs time maps to CL detection   
In order to obtain a global picture of the cycle length contents of the signal, the maximum values of CN are 



computed for each N on a time window of size I: 
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A local maximum of MI at Ni corresponds to the presence of that particular CL in the signal during the time 
window I, the value of that maximum being proportional to the energy generated by the corresponding 
depolarization.  Typically, the length of I is chosen equal to 500 ms.  

 
Figure 3: (Left) Time vs CL map on a 500ms time window. (Right) MI curve extracted from the map. The two 
local maxima correspond to the two values of CLs of the signal: 180 ms and 200 ms. 

2.4 CL tracking 
The computation of the MI(N) on a sliding window allows the tracking of the CLs over a large time window 

W. A new map composed of each Mi curve is then displayed. This map is a highly informative description of the 
pattern of cycle lengths during the time window W; changes, appearances or disappearances of CLs are displayed 
clearly in such a representation (Figure 4). The synthesis of this map is obtained by analyzing the local maxima 
of each Mi curve; a histogram is finally obtained by counting the number of occurrences of each CL. This 
histogram, once normalized, can be seen as the probability distribution of the CLs over the time window W. 

 

 
Figure 4: (Left panel) Result obtained on a synthetic 12s signal that has a fixed CL at 200 ms and two burst of 8 
depolarizations at 160 ms. (Right panel) Result obtained on a synthetic signal exhibiting of CLs of increasing 
length, from 160ms to 200ms every 1ms.   

3. Results 
The performance of this method is first compared to existing algorithms (Dominant Frequency and 

autocorrelation) on synthetic EGMs with known cycle lengths. In the third subsection, results on real data 
pertaining to 7 patients who underwent RF-catheter ablation for AF are presented.  

3.1 Comparison with Dominant Frequency    
The dominant frequency method for CL detection is based on a spectral analysis of the EGM signal over a 

time window I. After a preprocessing step (filtering and rectification), a Fast Fourier Transform is computed. It 
has been shown that the highest peak in the frequency domain (dominant frequency) is related to the mean CL of 
the signal over the time window I [Takahashi][Everett][Sanders]. This method was shown to be efficient in 
particular for fragmented EGM, but some issues limit its use. For example, a theoretical issue arises when two 
separate focal sources randomly alternate 160ms and 200ms CLs. The DF computed from the FFT analysis is 
linked to the mean frequency of the two sources. Figure 5 illustrates this property; on this synthetic example, the 



DF is 5.12Hz (195 ms). This value lies between 160 ms and 200 ms. The method proposed above leads to a 
histogram showing clearly the two expected values, 160 ms and 200 ms.  

Other studies showed that DF is a poor surrogate of CL, see for example [Narayan][Jason]. 

 
Figure 5: (Top) Value of CLs for a synthetic signal exhibiting randomly alternating depolarizations at 160ms and 
200ms. (Bottom Left) Corresponding spectrum: the DF is 5.12Hz (i.e. 195 ms). (Bottom right) Application of 
our method to the same signal: two CLs are detected at 160 ms and 200ms.  

3.2 Comparison with Autocorrelation 
The computation of the autocorrelation has been proposed for the evaluation of the CLs. This method was 

shown to be efficient especially for monophasic action potentials. But, in the case of a fragmented signal, the 
estimation of the CL seems difficult (Figure 6).     

 
Figure 6: Data recorded in the left appendage for a persistent AF case. The autocorrelation function results in 
several peaks due to the complexity of the signal. The MI(N) function computed over the same window exhibits 
only two peaks around the two values of CLs of the signal. The broadening of the peaks results from the 
fragmentation of the signal.  

 

3.3  Results on real data 
The algorithm efficiency was estimated on 7 patients with drug-refractory AF. AF was paroxysmal in 3 

patients, persistent in 2 and permanent in 2. EGM was recorded prior to any ablation within the left atrium using 
a 10 bipole mapping catheter for at least 30 seconds in the following sites: Left Appendage (LAA), Left Superior 
(LSPV), Left Inferior (LIPV), Right Superior (RSPV) and Right Inferior (RIPV) pulmonary veins. For each site, 
a single EGM was selected from the 10 available signals from signal to noise ratio considerations. CLs were 
manually measured for each selected signal to serve as a reference. On the same signals, CLs were estimated 
with the proposed algorithm on 500 ms sliding windows, every 250 ms, and CL histograms were compared to 



the reference with a Chi-squared contingency test, the null hypothesis being that the two measurements have 
identical continuous distributions.  

The test shows that the null hypothesis cannot be rejected under standard risk assumption of 0.05 (i.e. p < 
0.05) for all EGMs (Figure 7).  

 
Figure 7: p-values obtained with the Chi-squared contingency test for distribution comparison between manually 
labeled CLs and automatically annotated CLs for AF. All p values are greater than 0.05, thereby supporting  the 
null hypothesis that the two sets of measurements arise from the same distribution.  

 
Figure 8: Histogram of the estimated CL distribution (gray) and reference CL distribution (black) for the three 
median values of p. 

4.  Conclusions and Discussion 
The proposed algorithm extracts the CL efficiently on both synthetic and real data. The correlation with 

known cycle lengths in the synthetic cases is strong, and this method is shown to be efficient for burst detection 
and multiple CL recognition. On real data, the CLs obtained with this method are similar to those obtained from 
manually annotated EGMs, especially in paroxystic AF. In addition, the variability of the results does not depend 
on the measurement site (Figure 7 (right), Figure 8). Moreover, the higher the complexity of AF, the greater the 
variability on the results (Figure 7, left). A possible explanation is the complexity of the EGMs in persistent AF: 
the depolarisations are usually fragmented and manually positioning single markers is more subjective (Figure 
6). 

The method requires the adjustement of some parameters. In the results presented here, the width of the 
Gaussian function was set to 5ms, which is the mean duration of a non-fragmented depolarization. The influence 
of this parameter appears in the computation of G, which results in a Gaussian smoothing of the signal. Its value 
should be large enough to smooth the signal in order to avoid double counting for a single depolarization, but 
small enough to obtain a good resolution in CLs. Secondly, the size I of the time window has been set to 250 ms. 
This value guarantees that at least two subsequent depolarizations of the tissue can be observed.  Since the CL 
information from CL vs. time maps are condensed by estimating the maximum over this time window I (see 
section 2.3), a larger window should be considered only if the signal is stable.  

Furthermore, this method provides highly informative maps that characterize the EGM, and some parameters 
can be extracted from this representation: for example, stability can be estimated by the width of the peaks 
(Figure 6). Relative activation between sites can be also compared for guidance in the ablation procedure.  But 
the efficiency as a guideline for ablation is still to be investigated. A strategy could be to correlate the 
complexity of the pre-ablation CL map to the time of the procedure.  
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