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ABSTRACT: Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic
Resonance Imaging (MRI). A quantitative structure−property relationship (QSPR) machine-learning based method is applied to
predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of
such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a
combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is
estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of
uncharacterized, newly synthesized polyamino−polycarboxylic compounds and (ii) for providing independent log KGdL
estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database
of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present
study, is available in the Supporting Information (122 primary literature sources).

■ INTRODUCTION

Magnetic resonance imaging (MRI) has evolved into a major
noninvasive technique in medical diagnostics and biomedical
research. To enhance the contrast between normal and diseased
tissues, MRI examinations often require the administration of a
paramagnetic contrast agent, among which Gd3+ complexes are
prominent.1,2 For the latter, the purpose of the ligands is to
sequester the active cation and to form strong chelates that
actually remain stable in the body and are excreted intact,
thereby reducing significantly the toxicity of the free Gd3+ ion.3

It is now well established that polyamino-polyacetate ligands,
also called complexones, designed to satisfy the electronic
demand of the cation, confer such a stability to the
corresponding complexes, so that this class of compounds is
the most widely used in clinical practice as contrast agents for
MRI examinations.4,5 In the most recent generation of contrast
agents for functional and molecular imaging, the organic
counterpart (the ligand) can append useful functionalities such
as a targeting group that controls the biodistribution.6 Such

applications require more specific and more sensitive agents, so
that a lot of effort is devoted to finding new gadolinium-based
contrast agents with improved performance.
The high thermodynamic stability of a metal complex used as

a pharmaceutical drug is commonly associated with a low
toxicity,7 as both cation and ligand binding abilities to
endogenous substrates are neutralized. The thermodynamic
stability constant, also called formation constant, of a
gadolinium(III) complex (Ktherm or KGdL generally reported in
log K unit) is useful to assess the amount of free Gd3+ or free
ligand in a water solution. This constant thus appears to be
crucial for the development of new contrast agents for MRI.8

However, the experimental determination of these thermody-
namic constants is long and tedious, so that the development of
a computational predictive method would speed up the
estimation of Gd3+ binding for newly designed ligands.
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Conventional QSPR predictive tools are most often based on
relevant molecular descriptors that require the knowledge of
3D structures and are property-specific. Moreover, their design,
computation and selection are currently a major burden in
QSAR/QSPR applications. In this context, machine learning
approaches that predict the properties of interest directly from
the molecular structure, thereby exempting the designers from
designing, computing, and selecting relevant molecular
descriptors, are promising alternatives.
Graph machines are an example of such versatile methods:

they perform prediction of properties or activities of molecules
from their 2D structure encoded as a graph. In addition, as
graph machines do not require any descriptor, a set of graph
machines designed for predicting a property/activity of a set of
molecules can be retrained for predicting other structure-
dependent properties of the same molecules. By contrast, a
standard (descriptor-based) regression model (linear, poly-
nomial, neural net, etc.) that has been designed for predicting a
given property must be redesigned for predicting another
property, because descriptors are property-dependent.
A few computational tools were developed for the molecular

modeling of Gd3+ complexes and for the correlation of their
formation constant to a computed descriptor.9 To our
knowledge, a single predictive tool of log KGdL was reported.

10

It was built with molecular descriptors computed on the basis
of no more than 20 compounds representative of the main
classes of polyamino-polyacidic ligands. This tool correlates the
stability constants of Gd3+ complexes to the structures of the
ligands; it was tested on a limited set of eight complexones.
For the present study, a database of stability constants for

158 Gd3+ complexes was constructed. It was used for training
and testing predictive models of their stability, based on graph
machines, a machine learning algorithm that provides
predictions of molecular properties directly from the 2D
structure of organic compounds without resorting to chemical
descriptors. We show that the thermodynamic stability
constants of Gd3+ complexes (log KGdL) can be predicted
from the 2D structure of the ligands alone: no prior knowledge
of the structure of the complex, such as its overall charge or the
number and nature of the coordinating sites, is required. Thus,
chelation, which is essentially a 3D phenomenon, can be
predicted from the information contained implicitly in the
experimental data used for training and from the 2D structure
of the ligand; loosely speaking, the training mechanism of graph
machines can be said to provide a “projection” from the 2D
structure to the 3D chelating mechanisms, given the available
data. The fact that such a “projection” can be found from a

relatively limited amount of data highlights the fact that, for the
ligands considered in the present study, the 2D structure of the
ligand is relevant for the prediction of the stability of the
chelate.
The first section of the paper describes the model design and

validation methodology. In the second section, the perform-
ances of the resulting model are assessed on an independent
test set, and it is shown to be useful for assessing the validity of
some reported experimental data, and for predicting the log
KGdL of new compounds. In addition, the database of the 158
Gd3+ complexes is provided as Supporting Information; it
compiles the log KGdL values together with the most important
experimental information (analytical technique, medium,
temperature), and it cites the primary literature sources that
describe the experiments and their thermodynamic interpreta-
tion.

■ MATERIALS AND METHODS

Computational Methods. A graph machine is a
composition of parametrized functions whose structure reflects
the structure of the graph, so that the value taken by the
function, after training, depends on the graph structure, and
possibly on additional information.11 In QSAR/QSPR
applications, each node of the graph is a non-H atom, and
each edge is a bond (single or multiple) between atoms. In
order to take into account multiple bonds, the leaves of the
graph contain the degree of each atom (i.e., the number of
chemical bonds that bind it to the adjacent non-H atoms); the
leaves also contain a label that indicates the nature of the atom
and possibly additional data, such as stereochemical informa-
tion. To handle acyclic graphs only, a minimum number of
bonds are deleted if necessary, but the information about the
existence of the deleted bonds is retained in the degrees of the
adjacent nodes, present in the labels.
Figure 1 illustrates the steps that create the structure of a

graph machine for QSAR/QSPR applications. The starting
point is the SMILES description of the molecule of interest. It
provides the planar representation, which is turned into an
undirected, cyclic or acyclic, graph with appropriately labeled
nodes. After deletion of edges and selection of the central node,
a directed acyclic graph is constructed, where all paths in the
graph end at the central node, chosen as described in ref 12.
The final step of the construction of a graph machine consists

in postulating a parametrized function (termed node function),
and implementing it at each node of the graph. The output of a
node function is one of the inputs of the functions of the nodes
to which it is linked by an oriented edge of the graph; since all

Figure 1. Encoding a molecule into a graph machine: the example of HP-DO3A.
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paths of the graph terminate at the central node, the output of
that node (also termed output node) is the output of the graph
machine. After training as described below, the output of the
graph machine of a molecule is an estimation of the quantity of
interest, that is, the log KGdL of the chelate in the present study.
Node functions may be polynomials, neural networks, radial

basis functions, etc. All node functions, except the output node
functions, are identical within a graph machine and in all graph
machines of the database; the output node function may be
different from the other node functions, but all output node
functions are identical in all graph machines of the database.
Therefore, the number of parameters to be estimated during
training is the number of parameters of the postulated node
function and of the output node function. Although the
parameters are not expected to have a straightforward physical
or chemical interpretation, a graph machine is not a “black
box”: since its structure reflects the structure of the molecule, as
shown in Figure 1, a graph machine is a “gray box” or “semi-
physical” model. More detailed descriptions and didactic
examples are provided in previous papers.11,13,14

In the present work, the node functions were chosen to be
neural networks, a class of nonlinear functions that are known to
be universal approximators, that is, to be able to approximate
any sufficiently regular function in a bounded domain with
arbitrary accuracy. Neural-network-based graph machines (also
known as recursive neural networks15) have been described in
detail with didactic examples,11 as well as applications in
QSAR;13 a detailed mathematical analysis is provided by
Scarselli et al.16

A neural network is a linear combination of nonlinear
parametrized functions known as hidden neurons.17 The
complexity of a neural network is basically the number of its
hidden neurons; therefore, the purpose of complexity selection
for graph machines is to find the optimal number of hidden
neurons given the available data, as described below.
As usual in statistical machine learning, the parameters of the

node functions are estimated by minimizing the distance
between the experimental values of log KGdL of selected
compounds that make up the training set, and the
corresponding predictions provided by the graph machines.
In the present work, the distance J(θ) is the usual least-squares
cost function, that is, the sum, over all graph machines of the
training set, of the squared prediction errors (eq 1)
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where NT is the number of ligands of the training set, yi is the
experimental value of log KGdL of the i-th complex of the
training set, gi(θ) is the value of KGdL predicted by the
corresponding graph machine, and θ is the vector of parameters
(common to all node functions of all graph machines).
Therefore, all graph machines are trained simultaneously.
The accuracy of the predictions performed on the examples

of the training set is assessed by computing the root mean
square training error (RMSTE; eq 2), where θm is the vector of
parameters of the node functions after training.
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After training, when it is desired to predict the log KGdL of a
compound that is not present in the training set, its graph

machine is constructed as explained above, and the node
functions are assigned the parameters obtained by training, as
the node functions are identical for all molecules.
In the present paper, the optimal complexity of the node

functions, given the available data, was found by virtual leave-
one-out, a nonlinear extension of the PRESS (predicted
residual sum of squares) method.14,18 The virtual leave-one-
out prediction error of a ligand is a first-order approximation of
the difference between the experimental value of log KGdL and
the prediction that would have been performed on that ligand if
it had been withdrawn from the training set. The virtual leave-
one-out score VLOOS (eq 3) is defined as the root-mean-
square of the VLOO prediction errors
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where gi(θm
−i) is a first-order approximation of the predicted

value of log KGdL of complex i provided by the i-th graph
machine when the latter is not present in the training set, NT is
the number of ligands of the training/validation set, and yi is the
experimental value of log KGdL of the i-th ligand of that set.
Therefore, the score is an estimate of the generalization error of
the model.
The assessment of the performance of the selected model is

performed by applying it to a test set of complexes that are used
neither for training nor for model selection. In addition, the
model is used for estimating the stability constants of
complexes with unknown or questionable experimental values
(application set).

Database Construction. The development of a predictive
tool based on graph machines exempts the model designer
from finding and computing the structure-related quantities
that are correlated to the property of interest and can be used
as molecular descriptors. The only requirement is the
availability of a database of molecules whose log KGdL have
been measured. In order to take advantage of the full power of
the method, this database must sample the structural diversity
of the ligands designed to complex Gd3+.
Experimental investigations of the formation constants of

metal complexes have been conducted by different analytical
techniques for many decades. Specific compilations of reported
data are available, and some computer databases are
commercially available as well.19−21 The problem encountered
in compiling a collection of thermodynamic equilibrium data is
that the data are difficult to compare because they come from
different sources and were obtained in different experimental
conditions.
In the case of Gd3+ complexes formed with polyamino-

polycarboxylic acids, further difficulties in comparing the data
are intrinsic to methods adapted to systems with very high
equilibrium constants and high kinetic inertness. Generally,
very long equilibration times are needed and, in the particular
case of the macrocyclic compounds, a few days to several weeks
are required to reach the equilibrium in aqueous solution at
room temperature (3 weeks for the [Gd(DOTA)]− complex
for instance Figure 2). The difficulties arising from the high
values of stability constants are commonly resolved by the use
of an auxiliary competing ligand, while the kinetic inertness can
be overcome by performing discontinuous batch (out-of-cell)
titrations.
Nevertheless, other sources of uncertainty remain; the

example of [Gd(DOTA)]−, the most studied complex of this
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class, is typical of the difficulty of such experimental
determinations: several values of its stability constant, obtained
in different experiments performed at 25 °C by means of
various techniques in quite different ionic media, have been
reported, and range from log KGdL = 22.1−28.0 (24%
discrepancy).22 One may explain the discrepancies as follows:
(1) Specific experimental methodologies required for systems
characterized by a high equilibrium constant, a high kinetic
inertness, or both: out-of-cell and use of a competing ligand are
sources of uncertainty. Moreover, one must make sure that
measurements are done once all equilibria are reached
including those of competing processes (see below). (2)
Influence of the electrolyte: the high coordinating power (the
denticity) of polyamino-polycarboxylic ligands makes them
versatile ligands that are potentially able to coordinate all other
metal cations of lower coordinating number. Among such
competitive processes, the complexation of the alkaline cation
of the electrolyte used to keep the ionic strength constant is
one of the major cause of discrepancy in the reported values.
Indeed, log KGdL data have been most often determined in KCl
or KNO3 media (51% of the total values compiled), while K+

and Na+ are known to bind to complexones. In addition, such
binding is ligand-dependent, as illustrated for the macrocyclic
DOTA ligand (Figure 2) whose binding with Na+ and K+ is
characterized by log KNaDOTA = 4.4 and log KKDOTA = 1.6,
respectively, while it may be neglected for the homologous
macrocycle TETA (Figure 2).23 Another example of the
electrolyte influence is found for ligand trans-DO3A-Bu
(Figure 2) as Tot́h et al.24 showed that the stability constant
ranges from log KGdL = 18.7 to 21.8 (15% discrepancy) when
NaCl, NMe4Cl, or KCl is used as the electrolyte. To conclude
with the electrolyte influence (nature and ionic strength), given
that (i) only 23% of the log KGdL data of our database have
been determined in the expected more inert NR4

+ medium, and
(ii) investigations often failed to assess the influence of the
ligand-electrolyte interaction, one may state that it is
responsible for a part of the uncertainty in the published
data. (3) Influence of the overall basicity of the ligand: apart
from the interaction with the background electrolyte, the
specific interactions with the H+ cation, which are intrinsic to
the ligand and can be quantified by the overall basicity of the
latter (the stepwise protonation constants pKa), are always

taken into account and can be controlled by the pH of the
medium. This, however, is the other major cause of the large
range of log KGdL values found in the literature as they are
related to the set of pKa values for which a similar variability is
observed. (4) Finally, the formation of intermediate complexed
species (protonated and hydroxo forms, polynuclear forms and
complexes of stoichiometries higher than 1/1) may also cause
additional inaccuracies in the measurements.
In practice, an important part of the experimental

investigations in the domain aims at finding the technique
and the conditions that minimize all of the competitive
processes to postulate simpler models that are necessary for the
processing of the experimental measurements.
In a recent IUPAC Technical Report, Anderegg et al.

examined seven complexones, explained the causes of
discrepancies between the reported log KML values, and
categorized them according to their quality (reliability).25 The
conclusion is that one must remember that each reported piece
of data should be taken with some reservation and examined
carefully when building a datatset for which homogeneity is
mandatory. This is especially important in the context of
QSAR/QSPR, because the accuracy of the prediction made by
a machine-learning based model cannot be better than the
accuracy of the database used for training; therefore, an
estimate of this experimental accuracy must be defined.
To build a large enough, reliable database, we decided to

collect all the available experimental values of log KGdL for the
largest possible number of polyamino-polycarboxylic acids used
as Gd3+ ligands for MRI applications. We chose to discard
complexones with low denticity (glycine, iminodiacetic acids,
nitrilotriacetic acids, ...) and with log KGdL lower than 10, as
such ligands are not suited for the complexation of cations with
high coordinating number (8 or 9) such as Gd3+, and are prone
to give rise to numerous competitive binding processes. So, for
all ligands, only data relative to equilibrium (eq 4) involving the
complex GdL(3−n) of 1/1 stoichiometry were recorded.

+ =+ − −X Yoooo KGd L GdL with
[GdL]

[Gd][L]
n K n3 (3 )

GdL
GdL

(4)

Specific reviews dealing with Gd3+ chelates as MRI contrast
agents are available.4,26 They constitute an important source of
information with a large number of log KGdL data reported even
though experimental aspects are sometimes omitted. On the
basis of such sources, we decided to extract the data from the
primary source of bibliography, that is, the original
communications that describe the thermodynamic investiga-
tions. In addition to the log KGdL values, we recorded the
analytical method and experimental conditions in order to use
data sets that are as reliable as possible. With such
considerations in mind, a total of 158 polyamino-polycarboxylic
ligands were compiled with 222 log KGdL values distributed over
17 log K units (10 < log KGdL < 27) and coming from 111
articles published over the period 1953−2013 (see Supporting
Information).
Concerning the chiral ligands, the log KGdL values found in

the literature are most frequently relative to compounds
prepared as a mixture of stereoisomers. In the particular case of
racemic mixtures, the composition is known, but investigations
are done usually on ligands synthesized as an unqualified
mixture of stereoisomers. As for the few ligands resulting from
an asymmetric synthetic process and thus obtained as a well-
defined single stereoisomer (12 out of the 50 chiral
compounds), log KGdL is available for this particular isomer

Figure 2. Some representative polyamino-polycarboxylic ligands for
Gd3+ complexation and their experimental reported log KGdL values.
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only. The unavailability of log KGdL data for different
stereoisomers of chiral ligands precludes the use of stereo-
chemical features for the prediction of log KGdL so that these
particular ligands were encoded as stereochemically undefined
structures (see for examples trans-1,2-CDTA and trans-1,2-
CPDTA in Figure 3). Nevertheless, two chiral compounds

were found in the literature with log KGdL values available for
two distinct diastereoisomeric forms, the racemic mixture and
the meso isomer: cycy(m)DTPA and BDTA (Figure 3). These
compounds were included as well in our database as their
virtual stereochemically undefined forms and associated with
target log KGdL values corresponding to the averaged
experimental ones.
Database Partition into a Training/Validation Set, a

Test Set, and an Application Set. As indicated in the
Computational Methods section, model selection is a crucial
step in the design of a machine-learning based model. Its
purpose is to find the appropriate model complexity, given the
available data, which provides the best generalization. In the
following, we describe the procedure for partitioning the data
set into (i) a training/validation set for model training and
complexity selection, (ii) a test set for performance assessment,
and (iii) an application set for demonstrating applications of
the method to compounds with unknown or questionable log
KGdL values.
The reliability of the data present in both the training/

validation and the test sets is critical to the success of the
method. Consequently, compounds with several published log

KGdL values exhibiting large numerical discrepancies were
discarded from these two sets and were natural candidates for
the application one; the normalized range NR was defined as

=
−

⟨ ⟩
K K

K
NR 100

max(log ) min(log )
log

GdL GdL

GdL (eq 5)

where max(.), min(.), and ⟨.⟩ denote the maximum, minimum,
and mean values found in the literature for the compound
under investigation. Compounds with NR ≥ 25% were thus
included into the application set. Nevertheless, special attention
must be paid to the intensively studied DOTA, DTPA, and
EDTA compounds (Figure 2) for which numerous log KGdL
with large discrepancies were reported: these ligands are the
lead compounds for contrast agents that are commercially
available or currently under clinical investigations. They are
parent-structures of nearly all the ligands listed in our database,
so that they were included in the training/validation set. With
10 published data and NR = 24%, DOTA was included in the
training/validation set with the value found in an IUPAC
technical report (log KGdL = 25.0).25 As for DTPA, with ten
reported values and NR = 10%, the log KGdL retained is that of
Moeller et al. recommended in the IUPAC report (log KGdL =
22.5).25,27 In the case of EDTA, with seven reported values and
a smaller NR (8%), we decided to retain the mean experimental
value. For the other complexones with several reported log
KGdL values and a normalized range below 8%, the mean
experimental value was retained as well, except in a few cases,
discussed in the next paragraph, for which one of the reported
experimental value was preferred to the mean one.
Assuming that data reported in a given publication are

mutually consistent, some ligands were discarded from both the
training/validation and test sets and included into the
application set if one of the values seemed questionable. Such
is the case of the three macrocyclic ligands TETA, PEPA, and
HEHA (Figure 2 and Figure 4): Kodama et al. have studied
these three ligands and reported log KGdL values obtained by
potentiometry in Na+ electrolyte.28 For PEPA and HEHA, no
other data is available while TETA was also investigated by
Clarke et al. by potentiometry in K+ medium.29 The latter was
then examined by Anderegg et al.,25 who recommended the
value of Clarke. This led us to suspect the occurrence of a
systematic error in Kodama’s protocol, so that PEPA and
HEHA were included in the application set, while TETA was
included in the training/validation set with Clarke’s value.
The case of DO3A-L1 and DO3A-L2 (Figure 5) is similar:

as reference ligand, the authors also studied DOTA and
reported a log KGdL value well above that indicated in the
IUPAC report (log KGdL = 27.0 and 25.0 respectively)25,30 so
that values obtained in the same experimental conditions for
these two DOTA derivatives were assumed unreliable and the
ligands added to the application set.
For PCTA14 and PCTA12 (Figure 6), as well as for EOB-

DTPA and DTPA-BMEA (Figure 7 and Figure 8), for which
two log KGdL were reported, the assumed mutual consistency of
data obtained in a single research work led us to select the value
coming from the publication that provided our training/
validation or test set with the highest number of complexones.
For the two pyridine-containing cyclic ligands PCTA14 and

PCTA12, the values of log KGdL retained were those found by
Aime et al. (log KGdL = 12.5 and 21.0 respectively) as, with
PCTA13 (Figure 6), the authors characterized and compared a
total of three ligands in their work,31 while Dioury et al.32 and

Figure 3. Chiral ligands for Gd3+ complexation and their experimental
or target log KGdL values.
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Tircso ́ et al.33 reported the characterization of a single
compound, PCTA14 or PCTA12 respectively. For EOB-
DTPA, the value of Bianchi et al. was thus retained (log KGdL =
22.8) as they investigated seven other complexones in similar
conditions.26 For DTPA-BMEA, the experimental value
obtained by White et al. from potentiometric measurements
(log KGdL = 16.8)34,35 was preferred to the value obtained
previously by absorption spectroscopy (log KGdL = 16.5),36

because these authors characterized by potentiometry as well
two other DTPA derivatives selected for the training/validation
or test set (DTPA-BMMEA, DTPA-BHMEA, Figure 8).34,35

Moreover, by listing the values for the secondary N,N″-
bisamides derived from DTPA, the values for DTPA-BEA,
DTPA-BHeptA, and DTPA-APD (Figure 8), investigated as
DTPA-BMEA by absorption spectroscopy, were found to be
lower (log KGdL = 15.3, 15.6, 15.3, respectively)36,37 than the
values generally obtained for this subclass of ligands (log KGdL >
16). Therefore, data for the ligands studied under such
experimental conditions were not retained for training, and
DTPA-BEA, DTPA-BHeptA, and DTPA-APD were added to
the application set.

For DOTAM (Figure 5), Tircso ́ and Sherry argued that their
measurements in a KCl background give a more realistic value
than that previously obtained by Maumela et al. in a NaNO3
medium (log KGdL = 13.1 and 10.0 respectively)38,39 so that the
higher one was selected for the training process. For trans-
DO3A-Bu (Figure 2) studied by a single group in three
different media,24 the higher data obtained in K+ electrolyte
(log KGdL = 21.8) was selected since more than 50% of the
ligands were characterized in similar KCl or KNO3 media.
On the basis of the above criteria, 121 compounds were

finally selected for the training/validation and the test sets. 93
compounds have a single reported log KGdL value, and 28

Figure 4. Some cyclic complexones and their experimental reported
log KGdL values.

22

Figure 5. Some DOTA-like ligands and their experimental reported
log KGdL values.

22

Figure 6. Pyridine-containing macrocyclic ligands and their exper-
imental reported log KGdL values.
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compounds were characterized in distinct studies. For 19 out of
these 28 compounds, the mean experimental value was
retained, while, as discussed above, one specific experimental
value was selected for each of the other 9 compounds. Their
corresponding Gd3+ complexes have log KGdL values ranging
from 10.4 to 26.3, distributed as shown in Figure 9; 62% of the
log KGdL values are above 16.

Twelve of the above compounds were selected for the test
set, based on the following criteria: (i) the values of their
stability constants are uniformly distributed in the range shown
in Figure 9, (ii) cyclic and linear ligands are in equal numbers,
(iii) none of them are parent structures, and (iv) they all belong
to different families.
As a result, the training/validation set contains 109

compounds. All 121 molecules are reported in Tables S1 and
S2 of the Supporting Information.
The application set was first supplied with ligands discarded

from the training/validation and test sets as discussed above. In
addition, three kinds of molecules make up this 37 ligand data
set: (i) existing ligands with no available log KGdL value (Figure
10); (ii) ligands with several reported log KGdL values that
exhibit large normalized ranges, up to 37% for DO2A (Figure
5) and TTHA (Figure 7), larger than 25% for EPTPA (Figure
7), DTPA-MPEA2 (Figure 8), and ENDPDA (Figure 11), and
10% for CEDTA (Figure 7). In such cases, the predictive
method would help to make a choice between the reported
values and to point to a suspected systematic error in some
thermodynamic investigations; and (iii) ligands with a single
and unreliable reported log KGdL value; some considerations for
ligands of that category were discussed above (see HEHA/
PEPA, DO3A-L1/DO3A-L2, DTPA-BEA/DTPA-BHeptA/
DTPA-APD). The case of the EPTPA-bz (Figure 7) illustrates
the fact that critical comments led us to discard some values:
Merbach et al. studied the parent-ligands EPTPA and EPTPA-
bz-NO2 (Figure 7)

40 and claimed that the high stability found
for EPTPA-bz by Wang et al. (log KGdL = 23.8)41 did not seem
reasonable in comparison with the DTPA analogues. A similar
comparison prompted us to do the same with TTDA-PY
(Figure 7) as the single log KGdL reported was in the same
order of magnitude as the latter questionable compound (log
KGdL = 23.5).42 Moreover, the value found for TTDA-PY is
surprisingly larger than the value found previously for DTPA-
PY (Figure 7), a DTPA derivative expected to form a strongest
Gd3+ chelate than its homologous derivative (log KGdL =
21.6).43 It should be noted that, in this particular case, the other
three ligands characterized by T.-H. Cheng et al. in the same
work,42 that is, TTDA-HP, TTDA-H1P, and TTDA-H2P
(Figure 7) were kept in the training/validation set as the log
KGdL found (17.3, 17.2, 17.4 respectively) are consistent with
the values they had reported earlier for the reference ligand
DTPA-HP (log KGdL = 18.5).43

Figure 7. Some DTPA-like ligands and their experimental reported log
KGdL values.
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Figure 8. Some DTPA bisamides and their experimental reported log
KGdL values.
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Figure 9. Histogram of log KGdL of the 121 compounds in the
training/validation set (black) and in the test set (gray).
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A similar analysis by structural similarity led us to assign the
following compounds to the application set: DTPA-EAM as
well as N-ac3[15]aneN3O2-bis in comparison with their
respective regioisomers EDTA-DAM and N-ac3[15]aneN3O2
(Figure 4), DOTASA and DO3MA comparatively to DOTA
(Figure 5), DTPA-BMMOA compared to other tertiary
bisamides derived from DTPA (Figure 8), EEDTA and
HBED in comparison with EDTA (Figure 11). Ligand N-
pr3[15]aneN3O2-bis (Figure 4) was reported to give a complex
of higher stability with gadolinium than the acetate analogous
N-ac3[15]aneN3O2-bis (log KGdL = 16.6 vs 10.0).44 These
results are surprising as propionate pendant arms give rise to
less favorable six-membered chelation rings in comparison with
the five-membered rings given by the acetate ones so that it was
also classified in the test data set for further evaluation. We
decided to do the same with N-pr3[15]aneN3O2 (Figure 4) by
considering the conflicting data reported for its regioisomer N-
pr3[15]aneN3O2-bis (log KGdL = 11.2 and 16.6, respec-
tively).44,45 Several detailed Tables describing the content of
the two sets can be found in the Supporting Information.

Complexity Selection Results. To select models that can
generalize satisfactorily, graph machines of increasing complex-
ities were trained. For each node function complexity, 2000
models were trained with different random initial parameter
values (mean training time of the five hidden neuron model
selected: 0.6 s for 150-epoch training on a quad-core i7−2600
@ 3.6 GHz; for more details on implementation see ref 46) and
the mean of the ten smallest RMSTEs (eq 2) was computed
(Table 1). Table 1 also contains the values of VLOOS obtained

from (eq 3) where gi(θm
−i) is the mean VLOO prediction of

the log KGdL of complex i provided by the 20 models out of
2000 that have the smallest VLOO scores.
As expected, Table 1 shows that the RMSTE decreases

monotonically as the complexity (number of hidden neurons)
of the node functions increases. By contrast, the VLOO score
first decreases, goes through a minimum, and starts increasing;
the VLOO score is minimum for 6 hidden neurons, but the
difference between the VLOO scores obtained with 5 and 6
hidden neurons is not very large. In such a situation, the
recommended practice is to select the model with the smallest
complexity. In order to have a more quantitative assessment,
the normalized standard deviation of the leverages17 was
computed for models with five and six hidden neurons
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where hkk is the leverage of example k, N is the number of
training examples, and p is the number of parameters of the
model. The leverages have the following properties

Figure 10. Potential MRI contrast agents with unknown experimental
log KGdL; the estimated log KGdL value indicated is the value obtained
in this work.

Figure 11. Some EDTA-like ligands and their experimental reported
log KGdL values.
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Table 1. Estimation of the Quality of Training and of
Prediction for Increasing Graph Machine Complexity

no. of hidden neurons 2 3 4 5 6 7
RMSTEa 1.73 1.07 0.63 0.36 0.14 0.03
VLOOSb 2.12 1.52 1.12 0.95 0.82 1.31

aAverage of the RMSTEs of the 10 models (out of 2000) having the
smallest RMSTEs for the 109 compounds of the training/validation
set. bVLOO scores averaged over the 20 models (out of 2000) having
the smallest VLOO scores for the 109 compounds of the training/
validation set.
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which show that the leverage of an example can be interpreted
as the proportion of the total number of parameters p that is
used by the model to fit that example. Therefore, models that
exhibit high leverages for some examples are very likely to
overfit these examples, while an example whose leverage is close
to zero has a very small influence on the model. A model such
that all leverages are equal to p/N is very unlikely to overfit the
data since all examples have the same influence on the model.
The normalized standard deviation of the leverages is equal to 0
if all leverages are equal (smallest risk of overfitting), and it is
equal to 1 if p leverages are equal to 1 and all others are equal
to zero (worst risk of overfitting). Therefore, if two models
have similar VLOO scores, the model whose leverages have the
smaller normalized standard deviation should be selected; in
the present case, the mean value of the normalized standard
deviations of the leverages of the 20 five-hidden-neuron models
with the smallest VLOOS was found to be smaller than that of
six-hidden-neuron models. Thus, five hidden neurons was the
selected complexity.
In Figure 12, the leave-one-out estimates of log KGdL of all

compounds of the training/validation set (gray filled circle) and

the estimates of log KGdL of compounds of the test set (black
filled square) are plotted against the experimental values (these
values are reported in Table S4 of the Supporting Information).
The prediction error made by a statistical model should

always be compared to the experimental error. Unfortunately,
most log KGdL values are reported without any estimation of the
experimental uncertainty. A rough estimate thereof was derived

from 10 values available for log KGdDOTA, 10 values available for
log KGdDTPA, and 7 values available for log KGdEDTA which have
a normalized range of 24%, 10% and 8% respectively: as a
guideline, an accuracy of ±10% was thus considered a realistic
goal for the predicted values of log KGdL. Figure 12 shows that
all test ligands but one are located between the two dashed
lines that display the ±10% error range.
As a baseline test (suggested by one of the reviewers), our

method was compared to the “naıv̈e” predictor, which predicts
that the log KGdL of a ligand is just the mean of the log KGdL of
the ligands that belong to the same family. This applies only to
ligands whose family has a significant number of members in
the available data set. We considered families with more than
five members: DOTA-like (8 ligands), DO3A-like (12 ligands),
PCTA-like (6 ligands), NOTA-like (7 ligands), cyclic DTPA-
like (5 ligands), aza-crown ethers (9 ligands), DTPA-like (35
ligands), EDTA-like (13 ligands), and homologous EDTA-like
(6 ligands). For those 101 ligands, the mean squared prediction
error of the naıv̈e predictor was found to be 4.85, while the
VLOO mean squared error of the graph machines was 0.81.
Therefore, graph machines provide a reduction of RMSE by a
factor of 2.5 with respect to the naıv̈e predictor.
In view of the above results, the model was applied to the

molecules of the application set, as discussed in the following
section.

■ APPLICATION SET: RESULTS AND DISCUSSION

The predictive method described above can be useful: (i) to
provide a first estimate of the stability constants for
uncharacterized and for newly designed, hence hitherto
nonsynthesized, complexones and (ii) to provide an
independent estimation of log KGdL, either when reported
experimental results exhibit large numerical discrepancies or
when single measurements are deemed questionable in view of
values reported for similar compounds.

First log KGdL Estimations for Uncharacterized
Complexes. We have found 12 examples of reported
complexes prepared as potential MRI contrast agents with no
published thermodynamic stability constants: cyclo-PCTA12,47

amido-cyclo-PCTA12,48 P730-1,49 DOTA(GA)2,
50 DOTA-

GA,50,51 DOTABA,51 DOTA-hydrazide,52 DODPA and
MeDODPA,53 PNP-DTPA and PNPM-DTPA,54 and CHX-
DTPA55 (Figure 10). The estimated stability constants (log
KGdL est.) are reported in Figure 10.
The predicted stability constants for the 12-membered

macrocycles cyclo-PCTA12 and amido-cyclo-PCTA12 are
consistent with that measured for the parent PCTA12 as well
as for the other three pyridine-containing macrocycles of similar
cavity size, namely NB-PCTA12, BP2A and PC2A (Figure 6).
For cyclo-PCTA12, a vicinal di-C-substituted PCTA12
derivative, the estimated log KGdL = 18.6 is lower than that of
the parent ligand PCTA12 (Figure 6). One can assume that the
trans cyclohexyl subunit rigidifies the skeleton and that this
entropic effect is not favorable for the complexation. A similar
trend is observed for the linear series of DTPA derivatives as
cycyDTPA and cycymDTPA (Figure 3) give Gd3+ complexes
with less stability than that obtained with the parent ligand
DTPA (20.7, and 20.4 respectively, versus 22.5). For the trans-
amido-cyclo-PCTA12, the smaller estimated value log KGdL =
17.8 can be rationalized by the effect of the substitution of an
effective acetate subunit by an intracyclic carbonyl element that
may be less favorable for the cationic complexation.

Figure 12. Virtual leave-one-out estimates of log KGdL for the 109
compounds of the training/validation set (gray filled circle), and
estimates for the 12 compounds of the test set (black filled square) vs
experimental values of log KGdL. Graph machines whose node
functions are neural networks with five hidden neurons were used.
VLOO estimates are the mean of the VLOO estimates provided by the
20 models with the smallest VLOO scores. For consistency, estimates
for the test are the mean values predicted by the same models. The
coefficient of determination R2 has the same value (within three digits)
for the training/validation set and for the test set. The regression line
for the VLOO estimates and the bisector are not distinguishable.
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The predicted values for the four DOTA analogues bearing
an appended arm on at least one of the acetate subunit, P730-1,
DOTA(GA)2, DOTAGA, and DOTABA, by ranging from 22.1
to 23.0, were found to be smaller than that of the parent
DOTA. This is satisfactory, since DOTA is currently known as
the best ligand for the gadolinium complexation with a log KGdL
≈ 25.0, and since substitutions on acetate pendant arms are
prone to generate steric hindrance that may disturb the metal
complexation.
As for the DOTA-hydrazide ligand, the estimated log KGdL =

18.8 is consistent with the assumed lower coordinating ability
of a hydrazide subunit compared to that of a carboxylic one. A
similar trend was observed for the DOTAM and DOTA ligands
(Figure 5) where the replacement of the four carboxylic
subunits by carboxamide ones led to a dramatic loss of stability
of the corresponding gadolinium complex (log KGdL =13.1 and
25.0, respectively).25,38

The predicted values for DODPA and Me-DODPA (14.4
and 15.6, respectively) are consistent with that estimated for
DO2A (log KGdL = 14.4, Table 2). It may be noted that, on

such scaffold, a picolinic acid subunit appeared to be as effective
as a carboxylic one in terms of gadolinium chelation ability.
Moreover, these values are in agreement with those measured
for other hexadentate 12-membered tetraazamacrocyclic ligands
like BP2A and PC2A (log KGdL = 14.5 and 16.6, respectively).
The predictions for the three C-functionalized DTPA-

derivatives PNP-DTPA, PNPM-DTPA, and CHX-DTPA
follow the trend observed by other authors for the complex-
ation of the lanthanoid̈ yttrium(III): the stability constants for
the p-nitrobenzyl substituted complexes tended to increase with
additional substituents on the carbon backbone, while the
highest stability constant was observed for the cyclohexyl
derivative CHX-DTPA.54 Besides, the calculated value for
CHX-DTPA (21.7) proved to be in agreement with those
measured for the two dicyclohexyl DTPA-derivatives cycyDT-
PA and cycymDTPA (20.7 and 20.4, respectively, Figure 3).
Moreover, by comparison with the parent ligand DTPA (Figure
7), the trans cyclohexyl subunit is still not favorable for the
gadolinium complexation: a similar trend was observed
previously for cyclo-PCTA12 and the parent ligand PCTA12
(see above).
Independent log KGdL Estimation for Conflicting

Experimental Data. In the case of ligands characterized by
different research groups and/or by different analytical methods

that provided inconsistent or conflicting data, the computed
data delivers an independent evaluation that can help the
chemist to make a choice between the experimental values and
to reveal hidden systematic errors in an analytical protocol.
Seven examples are given in Table 2.
The computed log KGdL = 14.4 for DO2A (Figure 5)

provides a value closer to the lowest of the three experimental
ones; however, the two higher values reported (log KGdL ≈
19)56 seemed to be inconsistent with values of the stability
constant reported for DOTA and DO3A (Figure 5) and with
the effect of the loss of an acetic acid pendant arm on the
stability of the corresponding gadolinium complexes. Moreover,
with such consideration in mind, the computed value for
DO2A is consistent with the reported one for the analogous
rigidified pyridine-containing tetraazamacrocycle BP2A (14.5,
Figure 6).
The case of TTHA (Figure 7) is similar: in comparison with

the octadentate DTPA (Figure 7) and DOTA (Figure 5),
which are currently considered to be the best chelating agents
for Gd3+ with log KGdL ≈ 22.5 and 25.0, respectively, the lower
as well as the higher values reported for TTHA seemed
unreasonable. Consequently, the decadentate TTHA, able to
totally satisfy the electronic demand of Gd3+ known to have a
coordination number of 8 or 9,4 was expected to give a 1/1
gadolinium complex of similar stability. It should be noted that
none of these experimental values reported had been retained
in Anderegg’s IUPAC report.25 The estimated value log KGdL =
23.3 thus appears to be in agreement with the stability of the
two reference ligands.
The predicted values of the stability constants of both

CEDTA and EPTPA ligands (Figure 7) can be compared to
that reported for the parent DTPA (Figure 7): these two
homologous derivatives are expected to give gadolinium
complexes of lower stability due to the replacement of one of
the five-membered intramolecular chelation ring formed on
complexation by a less favorable six-membered one. For
CEDTA, the predicted value matches the highest experimental
one while for EPTPA, the calculated value is closer to the
lowest of the three experimental ones. Moreover, the
comparison of the computed values for CEDTA and EPTPA
highlights a remarkable difference in the structural modulation
of the DTPA skeleton as the replacement of an ethylene bridge
connecting two N-atoms by a propylene one seems more
damaging than the enlargement of one N-appended arm from
acetate to propionate.
In the case of DTPA-MPEA2 (Figure 8), the computed value

of log KGdL = 16.6 permits to select the most reasonable of the
two measured values (log KGdL = 16.1);62 these values are in
agreement with those collected for 11 other examples of
secondary DTPA-bisamides found in the literature, all being
characterized by a log KGdL ≈ 16−17 (DTPA-BMA, DTPA-
PA2, DTPA-BiPA, DTPA-BnBA, DTPA-BtBA, DTPA-BBA,
DTPA-BAdA, DTPA-BMBA, DTPA-BMEA, DTPA-BMPEA,
and DTPA-BDA (Figure 8).
As for ENDPDA (Figure 11), the computed log KGdL = 16.0

suggests that the higher experimental log KGdL = 15.3 is the
most reliable. These values are consistent with that found for
the parent EDTA (Figure 11; log KGdL ≈ 17.2) and with the
expected decrease in stability because of the formation of the
less favorable six-membered chelation rings with propionate
pendant arms instead of the five-membered rings with acetate
ones.

Table 2. Experimental and Estimated log KGdL Values for
Complexes with Conflicting Reported Data

ligand
experimental log

KGdL refs
estimated log

KGdL

DO2A (Figure 5) 13.1, 19.1, 19.4 57, 56 14.4
TTHA (Figure 7) 19.5, 28.4 58, 59 23.3
CEDTA (Figure 7) 16.7, 18.4 60 18.7
EPTPA (Figure 7) 17.5, 18.7, 22.8 40, 61 16.5
DTPA-MPEA2 (Figure 8) 16.1, 20.8 62, 36 16.6
ENDPDA (Figure 11) 11.8, 13.2, 15.3 63, 58 16.0
BDTA (Figure 3) 18.6a, 18.8a 64−66 18.5c

16.5b, 17b 67, 64
aRacemic trans diastereoisomer used for the log KGdL evaluation.
bLigand stereochemically well-defined: meso diastereoisomer used for
the log KGdL evaluation. cEstimated value for a stereochemically
undefined form (see Database Construction section).
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The case of the chiral ligand BDTA (Figure 3) is interesting
because it highlights the fundamental importance of the
construction of the training/validation set. It should be noted
that the predicted log KGdL = 18.5 is very close to the
experimental determination for the trans stereoisomer. This
result can be explained if one considers the learned structural
feature for similar chiral ligands bearing two vicinal asymmetric
centers, namely, cycyDTPA and cycymDTPA, CPDTA, and
CDTA (Figure 3). As discussed above, stereochemical features
were not taken into account in the present study, so that the
chiral compounds were encoded as stereochemically undefined
structures. However, for the few ligands available, the
experimental values have always been obtained with stereo-
isomers with a trans relative configuration so that it could be
expected that the modeling method considers each ligand
bearing two vicinal asymmetric centers as its trans stereoisomer.
New log KGdL Estimation for Ligands with Question-

able Reported Stability Constant. The reasons that led us
to classify some data as poorly reliable were discussed above.
These cases are presented in Table 3.

The estimated values for HEHA and PEPA (Figure 4) follow
the experimental trend as the higher stability is found for the
dodecadentate macrocyclic ligand HEHA. Moreover, the
estimated value log KGdL = 18.5 for PEPA is in agreement
with the experimental one reported for the oxygenated
analogous N-ac3[15]aneN3O2 (Figure 4) as a higher stability
is expected when two O-centers are replaced by two
aminoacetic subunits of higher chelating potential.
The estimated log KGdL for the four 15-membered

macrocyclic ligands DTPA-EAM, N-ac3[15]aneN3O2-bis, N-
pr3[15]aneN3O2-bis, and N-pr3[15]aneN3O2 (14.4, 17.4, 15.9,

and 14.4, respectively) are consistent together, as well as with
the reported log KGdL found for regioisomeric analogs EDTA-
DAM and N-ac3[15]aneN3O2 (Figure 4). For DTPA-EAM,
the estimated value is higher than the experimental
determination, albeit consistent with the reported log KGdL
for its regioisomer EDTA-DAM (log KGdL = 14.4 and 15.1−
15.3, respectively). The value predicted for N-ac3[15]-
aneN3O2-bis is far higher than the experimental one but
consistent as well with the value reported for its regioisomer N-
ac3[15]aneN3O2 (log KGdL = 17.4 and 17.2−17.3, respec-
tively). As for the estimated value for N-pr3[15]aneN3O2-bis
and for N-pr3[15]aneN3O2 (log KGdL = 15.9 and 14.4,
respectively) they are, as expected, lower than that found for
the respective acetate derivatives. Therefore, from these results,
one can conclude that the two isomeric 15-membered
macrocyclic skeletons, that is, [15]aneN3O2/[15]aneN3O2-
bis, and DTPA-EAM/EDTA-DAM give rise to complexes of
similar stability with Gd3+.
Concerning the DOTA derivatives DOTASA, DO3A-L1,

and DO3A-L2 (Figure 5) the estimated log KGdL ≈ 22−23 is
consistent with values pertaining to ligands with high number
of chelating subunits, which can fully satisfy the electronic
demand of Gd3+, and whose efficiency is modulated by steric
hindrance because of appended arms. Therefore, the
corresponding Gd3+ complexes are expected to be slightly
less stable than the complex formed with the parent DOTA
ligand (log KGdL ≈ 25).
As for DO3MA, a trimethylated derivative of DO3A (Figure

5), the estimated log KGdL = 16.8 seems more reasonable than
the surprisingly high experimental provided value: comparing
the effect of methyl substitution on the acetate pendant arms of
several macrocyclic ligands of our training/validation set,
namely NOTA vs NOTMA, DOTA vs DOTMA, N-ac3[15]-
aneN3O2 vs N-ac3[15]aneN3O2-Me3, and N-ac3[18]aneN3O3
vs N-ac3[18]aneN3O3-Me3 (Figures 4 and 5), it may be
concluded that such appendix is always damaging for the
stability of the corresponding Gd3+ complex while the extent of
the damage depends on the macrocyclic scaffold.
The log KGdL = 19.6 estimated for EPTPA-bz (Figure 7),

which is lower than the reported value log KGdL = 23.841 that
Merbach et al. deemed unreasonable,40 is less surprising when
compared with data reported for EPTPA (also named TTDA)
and EPTPA-bz-NO2 (Figure 7). It is also consistent with the
lower log KGdL = 14.8 estimated for TTDA-PY (Figure 7) as
the replacement of one acetate subunit by a 2-pyridinylmethyl
one had proved detrimental for the gadolinium complexation if
one takes into account the experimental log KGdL differences for
DTPA vs DTPA-PY (Figure 7), and for EDTA vs PEDTA and
BPED (Figure 11).
The suspected underestimated experimental log KGdL for the

three secondary DTPA-bisamides DTPA-BEA, DTPA-BHep-
tA, and DTPA-APD (Figure 8) have predicted log KGdL = 16.7,
16.2, and 16.8, respectively; they are in agreement with the
value estimated previously for DTPA-MPEA2 (log KGdL = 16.6,
Table 2) together with values reported for others secondary
bisamides (Figure 8).
As for the suspected overestimated log KGdL measured for the

tertiary DTPA-bisamide DTPA-BMMOA (Figure 8), the
predicted log KGdL = 17.9 is in good agreement with the two
other N,N″-dimethylated tertiary DTPA-bisamides found in the
literature DTPA-BMAMEA and DTPA-BMMEA (Figure 8).
Finally, for the two EDTA derivatives, EEDTA and HBED

(Figure 11), with suspected overestimated log KGdL ≈ 18−19 in

Table 3. Experimental and Estimated log KGdL Values for
Complexes with Questionable Reported Data

ligand
experimental log

KGdL refs
estimated log

KGdL

HEHA (Figure 4) 22.9 28 19.9
PEPA (Figure 4) 15.9 28 18.5
DTPA-EAM (Figure 4) 11.1, 11.4 68, 69 14.4
N-ac3[15]aneN3O2-bis
(Figure 4)

10.0 44 17.4

N-pr3[15]aneN3O2-bis
(Figure 4)

16.6 44 15.9

N-pr3[15]aneN3O2
(Figure 4)

11.2 45 14.4

DOTASA (Figure 5)a 27.2 70 22.3
DO3A-L1 (Figure 5)a 26.4 30 22.9
DO3A- L2 (Figure 5)a 25.9 30 22.9
(R,R,R)-DO3MA
(Figure 5)b

25.3 71 16.8

(S)-EPTPA-bz (Figure 7)b 23.8 41 19.6
TTDA-PY (Figure 7) 23.5 42 14.8
DTPA-BEA (Figure 8) 15.3 36 16.7
DTPA-BHeptA (Figure 8) 15.6 36 16.2
DTPA-APD (Figure 8)c 15.3 37 16.8
DTPA-BMMOA (Figure 8) 20.3 62 17.9
EEDTA (Figure 11) 18.1, 18.2, 18.3 72, 21 15.6
HBED (Figure 11) 18.9, 19.2 73, 19 17.1

aLigand stereochemically undefined; probable mixture of stereo-
isomers used for the log KGdL evaluation. bLigand stereochemically
well-defined used for the log KGdL evaluation. cMixture of stereo-
isomers used for the log KGdL estimation.
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comparison with that of the parent ligand, the lower estimated
values log KGdL = 15.6 and 17.1, respectively, appear more
relevant. Moreover, on such scaffold, in terms of gadolinium
complexation ability, it may be noted that (i) the 2-hydroxy-
phenylmethyl subunits act as the acetate ones; (ii) the
elongation of the central chain connecting the two N-atoms
is detrimental.

■ CONCLUSION
The QSPR predictive method described in the present work
makes use of a large database of 158 polyamino-polycarboxylic
complexants of Gd3+ designed for application as MRI contrast
agents. The efficiency of this approach is demonstrated by the
prediction of log KGdL values for new compounds, linear or
cyclic, that are consistent with the stability constant values of
reference ligands. Moreover, the models can provide
independent values that are of interest for complexants with
conflicting or questionable experimental data. It may be useful
as well for chemists to assess the effect of structural modulation,
therefore aiding the rational design of improved MRI contrast
agents. Finally, one can take advantage of the versatility of our
computational approach based on graph machines: once built,
the graph machines can serve, subject to the availability of an
appropriate database, to develop other QSAR/QSPR predictive
tools for all activity/property related to the same set of
compounds. In the particular case of polyamino-polycarboxylic
ligands, new predictive models of other properties of interest
such as the relaxivity of the gadolinium complexes, or the
stability constants of complexes formed with other metallic
cations for medical purposes, are under investigation.

■ ASSOCIATED CONTENT
*S Supporting Information
Structures of the ligands, experimental log KGdL values,
experimental conditions of the thermodynamic measurements,
references relative to the 158 polyamino-polycarboxylic ligands
used in that work, measured and estimated data of log KGdL for
the 109 molecules of the training/validation set and the 12
molecules of the test set, and SMILES notations and names of
the 158 Gd3+ chelating agents. This material is available free of
charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: fabienne.dioury@cnam.fr.
*E-mail: arthur.duprat@espci.fr.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Dr. Jean-Luc Ploix, consultant, for designing
and developing the Python libraries and graphical interface
used in this study.

■ REFERENCES
(1) Bellin, M.-F. MR contrast agents, The old and the new. Eur. J.
Radiol. 2006, 60, 314−323.
(2) Yan, G.-P.; Robinson, L.; Hogg, P. Magnetic resonance imaging
contrast agents: Overview and perspectives. Radiography 2007, 13,
e5−e19.
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(47) Dioury, F.; Sambou, S.; Gueńe,́ E.; Sabatou, M.; Ferroud, C.;
Guy, A.; Port, M. Synthesis of a tricyclic tetraazatriacetic ligand for
gadolinium(III) as potential contrast agent for MRI. Tetrahedron 2007,
63, 204−214.
(48) Dioury, F.; Ferroud, C.; Guy, A.; Port, M. Synthesis of an
hexadentate tricyclic tetraazadiacetic ligand as precursor for MRI
contrast enhancement agents. Tetrahedron 2009, 65, 7573−7579.
(49) Meyer, D.; Port, M.; Rousseaux, O.; Simonot, C. Metal chelates
of macrocyclic polyaminocarboxylic derivatives and their use for
diagnostic imaging. EP0922700, 1999.
(50) Kielar, F.; Tei, L.; Terreno, E.; Botta, M. Large relaxivity
enhancement of paramagnetic lipid nanoparticles by restricting the
local motions of the Gd(III) chelates. J. Am. Chem. Soc. 2010, 132,
7836−7837.
(51) Henig, J.; Tot́h, E.; Engelmann, J.; Gottschalk, S.; Mayer, H. A.
Macrocyclic Gd3+ chelates attached to a silsesquioxane core as
potential magnetic resonance imaging contrast agents: Synthesis,
physicochemical characterization, and stability studies. Inorg. Chem.
2010, 49, 6124−6138.
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