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Abstract 
The paper addresses two problems that are frequently encountered when modeling data by 

linear combinations of nonlinear parameterized functions. The first problem is feature 

selection, when features are sought as functions that are nonlinear in their parameters (e.g. 

Gaussians with adjustable centers and widths, wavelets with adjustable translations and 

dilations, etc.). The second problem is the design of an intelligible representation for 1D- and 
2D- signals with peaks and troughs that have a definite meaning for experts. 

To address the first problem, a generalization of the Orthogonal Forward Regression method 
is described. To address the second problem, a new family of nonlinear parameterized 

functions, termed Gaussian mesa functions, is defined. It allows the modeling of signals such 

that each significant peak or trough is modeled by a single, identifiable function. The resulting 
representation is sparse in terms of adjustable parameters, thereby lending itself easily to 

automatic analysis and classification, yet it is readily intelligible for the expert. An application 

of the methodology to the automatic analysis of electrocardiographic (Holter) recordings is 
described. Applications to the analysis of neurophysiological signals and EEG signals (early 

detection of Alzheimer’s disease) are outlined. 
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1. Introduction 
Modeling a signal by a family of parameterized functions is particularly useful in a variety of 

fields such as pattern recognition, feature extraction, classification or modeling. It is a 

straightforward way of performing information compression: the finite set of parameters of 
the modeling function may be a sparse representation of the signal of interest.  

Typical families of parameterized functions used for modeling are polynomials, wavelets, 
radial basis functions, neural networks, etc. For a given modeling problem, the choice 

between those families is based on such criteria as implementation complexity, sparsity, 

number of variables of the quantity to be modeled, domain knowledge. The latter factor is 
actually the driving force behind the methodology described in the present paper. 

More specifically, the scope of this article is twofold: first, we address the problem of feature 

selection, i.e. the problem of finding the most appropriate set of functions within a given 

family of functions that are nonlinear in their parameters; the solution that we describe here 

is generic. The second purpose is more application-specific: the design of a meaningful 

representation for 1-D or 2-D signals that exhibit bumps and/or troughs having specific 

meanings for the domain expert, i.e. the problem of finding a representation such that each 

bump or trough is modeled by a single, uniquely identifiable function. The intelligibility of 
the representation by the expert is especially important in the field of biological signal 

analysis: an application of our method to anomaly detection from electrocardiographic 
recordings is described (1D-signals), and an application to the modeling of time-frequency 

maps of electrophysiology and electro-encephalography recordings (2D-signals) is outlined. 

The first part of the paper is devoted to the description of Generalized Orthogonal Regression 
(GOFR), an extension of the powerful Orthogonal Forward Regression (OFR) method of 

modeling by parameterized functions that are linear with respect to their parameters. We show 
that OFR can be extended to modeling by functions that are nonlinear with respect to their 

parameters. We show that GOFR overcomes some important limitations of traditional OFR. 

In the second part of the paper, we define Gaussian mesa functions, which are shown to be 
especially appropriate for modeling signals that exhibit positive and negative peaks, in such a 

way that each peak can be appropriately modeled by a single mesa function. 
Finally, we describe an application of the methodology to the automatic analysis of long-term 

electrocardiographic recordings (Holter recordings). We first show how each positive or 

negative peak can be modeled by a single mesa function. Then we show how each function 
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can be labeled, automatically and unambiguously, with the labels used routinely by experts, 

and how automatic discrimination between two types of heartbeats can be performed with that 

signal representation. As a final illustration, we outline an application of the methodology to 
time-frequency maps from electrophysiological and electroencephalographic recordings. 

2. Orthogonal Forward Regression for feature selection 

2.1. The feature selection problem 

Let gγ be a parameterized function and γ the vector of its parameters. Let ! = g"{ }
" #$

 be a 

family of such functions, where Γ  is the set of the parameters. Note that the cardinality of Ω 

can be either finite or infinite.  

Modeling a function f (
 
f !L

2
(!) ) with M functions, chosen from Ω, consists of finding a 

function 
 
!f  that is a linear combination of M functions of Ω such that the discrepancy eM 

between f and 
 
!f  is as small as possible:  

f = ! ig" i
i=1

g" i #$

M

% + eM          (1) 

That problem amounts to estimating M parameter vectors !
i{ }

i=1..M
 and M scalar parameters 

!
i{ }

i=1..M
 to construct 

 
!f . It can be solved in two steps: 

• a feature selection step: in the set Ω, find the subset of M functions that are most 

relevant to the modeling of the signal of interest (see for instance [9], [16]), 

• an optimization step: find the parameters of the functions selected as relevant features 
at the previous step. 

2.1.1. Optimization 

In the optimization step, !
i
,"

i{ }
i=1..M

 are estimated from training data, i.e. specific values 

x
k{ }

k=1..N
 of the variable (or vector of variables), for which measurements fk of the signal 

were performed; the measurements are assumed to have additive zero-mean noise εk: 

fk = f(xk) + εk. The set xk , fk( ){ }
k=1..N

 is called the training set. 

The least squares cost function J is defined as:  
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J = fk ! !f xk( )( )
2

k=1

N

" = fk ! # ig$ i xk( )
i=1

g$ i %&

M

"
'

(

)
))

*

+

,
,,

2

k=1

N

"      (2) 

Equation (2) can be also written in the following form, highlighting the modeling error 

e
M
x
k( )  and the measurement noise εk:  

 

J = fk ! f xk( )( ) + f xk( )! !f xk( )( )( )
2

k=1

N

" = #k + eM xk( )( )
2

k=1

N

"    (3) 

The optimal model in the least squares sense 
 
!f  is obtained by minimizing function J with 

respect to its parameters: 

 

 

!f = ! ig" i
i=1

g" i #$

M

%               (4) 

with    J !
i
,"

i{ }
i=1.,..M( ) = min

!#R," #$
J !,"{ }( )( ) . 

2.1.2. Feature selection 

The minimization of J is a multivariable nonlinear optimization problem, which is usually 
solved by iterative algorithms such as the BFGS algorithm or the Levenberg-Marquardt 

algorithm (see for instance [12], [15]). Being iterative, those algorithms require the choice of 

initial values of the parameters 
  
!

i
,"

i{ }
i=1,...M

. Therefore, prior to the optimization step, the 

number M of functions must be chosen, together with the initial values of the M parameter 

vectors 
 
!

i{ }  and of the parameters 
 
!

i{ } . 

For functions that are local in space, such as Gaussians, random initialization of the 

parameters (centers and variances) is not recommended, because many random initializations 

and optimizations may be required in order to find a satisfactory model. In such a case, a 
frequent strategy consists in choosing one Gaussian per observation of the training set, 

centered on that point in input space, and with arbitrary variance [14]. The main shortcoming 
of the above initialization is the fact that the number of selected functions (M) is not optimal: 

it is related to the number of examples, which may have no relation whatsoever to the 

complexity of the data to be modelled. The Least-Squares Support Vector Machine (LS-SVM, 
also known as Ridge SVM) [5] starts with one function per example, and performs a selection 
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depending on the complexity of the margin boundary, but the parameters of the RBF 

functions are identical for all examples, and they are kept fixed during training.  

The following three-step method, suggested in [4] for RBF functions and in [13] for wavelets, 
was designed to overcome those difficulties:  

• generate a subset D of Ω, of finite size, called library,  

• select M functions from D by an orthogonalization method based on the Gram-

Schmidt algorithm [3]. This step is called the selection step; it is similar to Orthogonal 
Matching Pursuit ([11], [20]).  

• initialize the optimization of J with the parameters !
i{ }  of those M selected functions, 

and the values !
i{ }  computed during the Gram-Schmidt selection step. 

The final step consists in minimizing J with respect to the parameters thus initialized, as 
described in section 2.1.1.  

If the model is linear in its parameters, the first two steps, called Orthogonal Forward 

Regression (OFR) or Orthogonal Matching Pursuit ([11]), are sufficient for constructing the 
model. OFR is described in detail in Appendix 1.  

2.2. Limitation of the OFR procedure for feature selection 

The OFR methodology presented above has been shown to be effective for modeling data 

with Radial Basis Functions [4] and wavelets [13]. However, the choice of the library D 

remains critical for a good optimization, and, in general, its size must be large in order to 
sample the whole space of parameters. 

The main limitation of the algorithm can be illustrated as follows: assume that the function f 

to be modeled actually belongs to the set Ω of functions within which the model is sought (in 

such a case, the model is said to be "true"). Theoretically, only one function of Ω is sufficient 

for modeling f: function f itself. Further assume that f happens to belong to the library D of 

candidate functions. The Gram-Schmidt procedure will then select that function as the first 
function of the model, and the optimization of the parameters will be useless: one will have 

e
1
= 0 . 

Conversely, if function f does not belong to the library D, the procedure will select M 

functions for modeling f, and the subsequent minimization of J will generate a model in which 
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the M functions will all be relevant: one will thus have built a model of a function of Ω with 

M functions of Ω, whereas a single function of Ω would have been sufficient for modeling f.  

Traditionally, that problem is alleviated by building a very large library of candidate functions 

[6], so that, with high probability, the first selected function is very close to f in parameter 
space; then the optimization step brings that function even closer to f, and cancels the weights 

of the M-1 additional functions selected for the model. However, it has been shown [7] that 

selecting M functions in a library that contains Nd functions, with N examples, requires 
O(M3+M2NdN) operations: the computation time generated by large libraries hampers the 

efficiency of such a method to a large extent. 
Actually, that problem can be traced to the fact that, in the procedure that was described in the 

previous section, the selection and optimization steps are distinct. In the following section, a 

procedure that merges those two steps, called GOFR (Generalized Orthogonal Forward 
Regression), is described: essentially, the method consists in “tuning” the function just after 

its selection, before any subsequent orthogonalization. 

3. Generalized Orthogonal Forward Regression (GOFR) 
Each iteration of the GOFR algorithm consists of 4 steps (Figure 1):  

1. selection of the most relevant function g! of D; 

2. “tuning” (optimization) of g!  (this step is the main difference between OFR and 

GOFR); 

3. orthogonalization of f; 

4. orthogonalization of the library D. 

3.1. Iteration n = 1 

1) Selection of the most relevant function g!
1

 in 1D = D  

As in the OFR procedure (see appendix 1), the function g!
1

 that has the smallest angle 

with f in observation space is selected: 

cos
2
f ,g

! 1( ) = max
g! "D

cos
2
f ,g

!( )( )    where   cos2 ( f ,g! ) =
f ,g!

f g!

"

#
$$

%

&
''

2

  (5) 
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Figure 1 

Top: conventional OFR for feature selection followed by nonlinear optimization; 

bottom: Generalized Orthogonal Forward Regression (GOFR) 

 

The model 
 
!f  is built:  

 

!f =!
1
g"

1

  where !
1
= f ,g" 1        (6) 

2) Tuning of the selected function g!
1

 

Tuning g!
1

consists in estimating its parameters γ1 in order to minimize the modeling 

error e1. That estimate is computed on the training set by minimizing the mean square 

error J:  

 

J(!
1
,"

1
) = fi #

!f (xi )( )
2

i=1

N

$ = fi #"1
g! 1 (xi )( )

2

i=1

N

$      (7) 
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Note that this optimization problem involves only the parameters pertaining to g!
1

, and 

α1, so that a solution is found with a small amount of computation. Let (!
1

"
,#

1

"
)  be that 

solution. The first function of the model is thus g
!
1

"  and the first parameter is !
1

" . The 

model at the first iteration is thus:  

 

!f =!
1

"
g
#
1

*           (8) 

We denote u
1
= g

!
1

"  

3) Orthogonalization of f  (Figure 2) 

As in the OFR algorithm, orthogonal projections onto the null subspace of the first 
selected function u

1
= g

!
1

"  are performed: 

r
2
= f ! f ,u

1
u
1
         (9) 

r2 is thus in the null space of g
!
1

" . 

 
Figure 2 

Orthogonalization with respect to u
1
= g

!
1

"  

 

4) Orthogonalization of 1D = D  
A new set 2D is computed, in the null space of u1: 

2
D =  

2
g! =

1
g! "

1
g! ,u

1
u

1
  ,  

1
g! #

1
D { }       (10) 
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3.2. Iteration n 

When iteration n starts, functions g
! 1
" ,g! 2"

,...,g
! n#1
"( )  are selected, and the orthogonal family 

u
1
,u

2
,...,u

n!1( )  is built such that span(g
! 1
" ,g! 2"

,...,g
! n#1
" ) = span(u1,u2 ,...,un#1) .  

Function rn is in the null space of the space generated by span(u1,u2 ,...,un!1) , and the set nD is 

available, built as follows:  
n
D =

n
g! =

n"1
g! "

n"1
g! ,un"1 un"1,

n"1
g! #

n"1
D{ }       (11) 

That guarantees that the elements of nD are orthogonal to the space generated by 

g
! 1
" ,g! 2"

,...,g
! n#1
"( ) . 

1) Selection of g! n  

The element g! n  of nD that has the smallest angle with rn in observation space is 

selected:  

cos
2
r
n
,
n
g! n( ) = max

n
g! "

n
D

cos
2
r
n
,
n
g!( )( )        (12) 

Thus, the model built from n functions can be written as: 

 

!f = ! i

"
g# i
"

i=1

n$1

% +!ng# n   and  !n = f ,g" n      (13) 

2) Tuning of g! n  

The tuning of g! n is performed by minimizing the function J !
n
,"

n( ) : 

 

J ! n ,"n( ) = fi # !f xi( )( )
2

i=1

N

$ = fi # " i

%
g! i
%
xi( )

i=1

n#1

$ #"ng! n xi( )
&
'(

)
*+i=1

N

$
2

   (14) 

Let !
n

"
,#

n

"( )  be the result of the optimization. As mentioned above, optimization is fast 

because the only variables of J are γn and αn. The n-th function of the model is thus g
! n
" , 

and its coefficient is !
n

" . 

Therefore the model is:  

 

!f = ! i

"
g# i
"

i=1

n

$           (15) 
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un is defined as: 

un = g! n"
# g

! n
" ,ui ui

i=1

n#1

$          (16) 

Thus one has  

span(g
! 1
" ,g! 2"

,...,g
! n
" ) = span(u1,u2 ,...,un )        (17) 

and  

u
j
,u

i
= !

i

j       where !
i

j  is the Kronecker symbol      (18) 

which guarantees the orthogonality of the basis (u
1
,u

2
,...,u

n
) . 

 

3) Orthogonalization of rn  

In order to compute the new residual rn+1, which is the part of f in the null space of the 

space spanned by the (g
! 1
" ,g! 2"

,...,g
! n#1
" ,g! n"

) , one can write rn+1 as: 

r
n+1

= r
n
! r

n
,u

n
u
n
 

4) Orthogonalization of nD  

The set n+1D is computed as in (30): 
n+1
D =

n+1
g! =

n
g! "

n
g! ,un un ,

n
g! #

n
D{ }

     =
n+1
g! = g! " g! i ,ui ui

i=1

n

$ ,g! #D
%
&
'

(
)
*

      (19) 

3.3. Iteration n = M 

After M iterations, the family g
! 1
" ,g! 2"

,...,g
! M
"( )  of waveforms from Ω and the family 

!
1

"
,!

2

"
,...,!

M

"( )  are built. Therefore, the model 
f!

of the function f can be written as:  

 

!f = ! i

"
g# i
"

i=1

M

$           (20) 

As in the OFR algorithm, one can, in principle, perform a final minimization of the mean 

square error by adjusting the whole set of parameters !
1

"
,!

2

"
,...,!

M

"( )  and !
1

"
,!

2

"
,...,!

M

"( ) ; it 

turns out, however, that the overall improvement is usually slight, and may not be worth the 

computation time. 
Hence, the model of f that will be retained is the model described by equation (20). 
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3.4. Summary: GOFR vs. (OFR + optimization) 

Regression with functions that are nonlinear in their parameters can be performed by feature 

selection from a large library of functions, followed by nonlinear optimization of a cost 
function with respect to all parameters initialized in the selection step.  Thus, if nf functions 

with p parameters have been selected by OFR, the process involves a nonlinear optimization 
in a space of dimension nf p. 

In GOFR, each selected function is optimized prior to orthogonalization, so that modeling by 

nf functions with p parameters involves nf nonlinear optimizations in a space of dimension p. 
Therefore, if the number of parameters is small and the number of functions is large, GOFR 

may be expected to be much less computer intensive than OFR followed by simultaneous 
optimization of all parameters.  That will be exemplified in section 4.4. 

4. Application to the detection of the characteristic waveforms in 
ECG recordings 

The above procedure is particularly efficient for the extraction of characteristic waveforms, as 
shown in the present section on the modeling of ECG signals. The ECG recording of a normal 

heartbeat is made of 5 characteristic peaks (Figure 3), termed “waves”, traditionally denoted 
as P, Q, R, S and T waves (see for instance [10]). The shape and position of the waves are the 

basis of the experts’ diagnosis. In order to design an effective diagnosis aid system, based on 

an automatic labeling of the waves, it is essential to accurately (i) locate those waves, and (ii) 
extract their shape. 

To that effect, we used the GOFR algorithm described above, with a particular type of 
function specially designed to fit the cardiac waves that we will refer to as “Gaussian mesa”. 
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Figure 3 

Typical heart beat with P, Q, R, S and T waves 

 
 

4.1. Gaussian mesa function 

The cardiac waves P, Q, R, S and T can be seen as positive or negative peaks below and 

above a baseline. The T wave is generally asymmetric, and, in some pathological cases, some 

waves exhibit a plateau. The Gaussian mesa waveform defined here makes it possible to fit 
exactly that kind of signal. A Gaussian mesa is an asymmetric function with 4 parameters and 

unit amplitude; it is made of two half-Gaussian functions connected with a linear, horizontal 
part (Figure 4). This function is continuous, differentiable, and all its derivatives with respect 

to its parameters are continuous, which is essential when applying standard optimization 

algorithms. 

 
Figure 4 

Definition of the Gaussian mesa function 
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The 4 parameters are thus γ = {µ, σ1, σ2, σL}: 

µ: location in time, 

σ1: standard deviation of the 1st Gaussian function, 

σ2: standard deviation of the 2nd Gaussian function, 

σL: length of the horizontal part, 

The following conditions must be complied with:  

σ1, σ2 > 0, σL ≥ 0 

In the following, we show how the GOFR algorithm was successfully applied to the modeling 

of heartbeat recordings by Gaussian mesa functions. 

4.2. Library of Gaussian mesas  

As mentioned in section 1, the library is constructed by sampling the set Γ of the parameters. 

That sampling requires a tradeoff: the sampling step must be small enough for fast 

convergence of training, but it must not be so small that it would increase the computation 
time during the subsequent orthogonalization step. Since the goal of the method is to provide 

a representation that matches the expert’s representation of the signal, expert knowledge must 

be used at this point: in the present case, the narrowest peak to be modeled is at least 20 msec 
long [10], so that there is no point, in using library functions of width below 20 msec: hence 

one should have σ1 +σ2 +σL > 20 ms. Moreover, in order to decrease the number of functions 

(which is desirable, as shown in section 2.2), the library can be built from symmetrical mesas 

only, with horizontal part of length zero: σ1 = σ2 and σL = 0 (Figure 5). Since the GOFR 

algorithm performs a tuning of the parameters of the selected waveform just after its 

selection, the discretization of Γ may be coarse: in the present application, the library has only 

132 symmetric Gaussian mesas. 

4.3. Application of the GOFR procedure to Gaussian mesas for ECG 
modeling 

The GOFR algorithm is run with M=6, since there are 5 characteristic peaks in a normal ECG 

heartbeat recording, and we allow for one extra function for modeling a possible spurious 

“bump” due to noise. Therefore, the following four steps were iterated 6 times:  
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• selection of the most relevant function g of D, 

• tuning of g, 

• orthogonalization of the ECG signal f, 

• orthogonalization of library D. 

The first selected function is shown on Figure 6. 
During the tuning step, the parameters of the selected function are estimated; the result of that 

step is shown on Figure 7. Note that, in that case, constrained optimization is performed since 

σ1, σ2 and σL must be positive. In all numerical experiments reported here, optimization was 

performed by the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm [15] with appropriate 
modification to accommodate the constraints. 

 
Figure 5 

Library D is made of symmetric Gaussian mesas, with different locations and different 
standard deviations. 
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Figure 6 

First Gaussian mesa function selected and signal f 

 

 
Figure 7 

Tuned Gaussian mesa function  

 

Then the part of the ECG that remains to be explained (Figure 8) is computed as shown 
previously (9), and the new library derived from the initial one is also computed (10). 

After 6 iterations of that 4-step algorithm, the ECG has been broken up into 6 Gaussian Mesa 

functions (Figure 9). 

 
 Figure 8 

Part of the ECG that remains for modeling after iteration 1 
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Note that each characteristic cardiac wave is fitted by exactly one mesa function, which was 

the purpose of combining GOFR and mesa functions. The benefits of that property are 

illustrated in the next sections. 

4.4. Comparison between GOFR and (OFR + optimization) 

In order to provide a comparison between GOFR and OFR followed by optimization, on a 
non-academic example, we apply those algorithms to ECG heartbeats. Since the same 

parameters are optimized by the methods, the same library of functions (described in section 

4.2) was used for both methods. 
 

 
Figure 9 

A normal heartbeat broken up into Gaussian mesa functions (shown in space D). Functions 1 

to 5 will be assigned one of the “medical” labels P, Q, R, S, T as described in section 4.5, 
function 6 will be labeled as “noise”. 

 

As a first test, 100 heartbeats were modeled, from the MIT-BIH Arrhythmia databaseI. Table 
1 shows the computation time per heartbeat and the mean square modeling error. In the 

present case, 6 functions are selected with 5 parameters each, so that the comparison is 

                                                
I Available from http://ecg.mit.edu/ 
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between 6 nonlinear optimizations in a 5-dimensional space and 1 nonlinear optimization in a 

30-dimensional space. Note that the computation times include selection and 

orthogonalization, in addition to nonlinear optimization (see Figure 1). Clearly, the GOFR 
procedure is both more accurate and faster than OFR followed by optimization. 

In addition, we discuss below the results obtained on 3 examples. 

Example 1 (Figure 10) is a biphasic heartbeatII: the Q waves and the R waves have the same 

amplitude. 
 

 Computation timeIII Mean Square Error 

OFR + 
optimization 

29 msec 1.41 . 10-3 

GOFR 18 msec 0.17 . 10-3 

Table 1 
Comparison of computation time and accuracy of OFR followed by simultaneous 

optimization of all parameters, and GOFR 

 
Example 2 (Figure 11) is a ventricular ectopic heartbeat: this type of anomalous beat is very 

frequent; one of its specific features is that the width of the R wave is larger than 0.8 ms. 
Example 3 (Figure 12) is an atrial ectopic beat: the upside-down P wave is typical of that 

anomaly. 

It is clear from those examples that, if each wave is modeled by a single function (as shown in 
the present section), and if each function is subsequently assigned automatically a label P, Q, 

R, S or T (as described in section 4.5), automatic discrimination between such heartbeats can 
easily be performed from the parameters of the mesa functions that model each wave. 

 

                                                
II Examples 1 and 2 are sampled from records #1001 and #1005 from the AHA database (American Heart 

Association database) [1]. Example 3 is sampled from the Ela Medical database (not available publicly). 
III C program running under Windows XP on a Pentium IV-m, 2.8 Ghz. 
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Figure 10 

Comparison between OFR and GOFR models on a biphasic normal beat. MSE denotes the 

mean square modeling error. 

 

 
Figure 11 

Comparison between OFR and GOFR on a ventricular ectopic beat. MSE denotes the mean 

square modeling error. 
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Figure 12 

Comparison between OFR and GOFR on an atrial ectopic beat. MSE denotes the mean square 

modeling error. 
 

In all those examples, the MSE (mean square error) is smaller for GOFR than for OFR. In 

addition, and more importantly, the representation of the characteristic cardiac waves is much 
more meaningful when obtained by the GOFR decomposition: each mesa function selected 

and tuned with the GOFR algorithm has a medical meaning, and, conversely each wave is 
modeled by a single mesa function. For example, in the atrial ectopic beat shown on Figure 

12, the main information of the heartbeat (the upside down P wave) is not modeled with the 

OFR algorithm, while Gaussian mesa function number 4 models this anomaly by application 
of the GOFR algorithm. 

The above examples are samples from a very large database. For a complete description of the 
application of the GOFR to the automatic analysis of Holter recordings (ECG recordings of 

24-h duration), and its application to standard international ECG databases, the interested 

reader is referred to [8]. 

4.5. Application of the mesa function representation to heartbeat 
discrimination 

The benefit of the modeling methodology described above is clearly illustrated in the final 

step of the process, which consists in assigning a “medical label” to each mesa function. Since 
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each wave is modeled by a single mesa function, a vector in 4-dimensional space describes 

each wave present in the database; therefore, classical discrimination methods can be used for 

assigning a label to each mesa function. 
The task is performed in two steps (Figure 13): first, the R waves are labeled, in order to 

discriminate two different kinds of heartbeats, namely, the “normal”IV beats and the 
ventricular beats; the P, Q, S, T waves of non-ventricular beats are subsequently labeled.  

 
Figure 13 

Assignment of medical labels (P, Q, R, S & T) to the mesa functions that model the heartbeats  

4.5.1. Labeling the R waves 

The labeling of the R waves is performed by discriminating R waves from non-R waves. A 
database of 960 mesa functions that model R waves and 960 mesa functions that model non-R 

waves was used for training and validation of a neural classifier. Testing was performed on a 

database with 960 mesa functions that model R waves and 7117 mesa functions that model 
non-R waves. The components of the input vector were the 5 parameters of the mesa 

functions, and the output was an estimate of the probability Pr(CR⎟ xi) of mesa function i 

being a R wave given the vector xi of its parameters (Figure 14). For each heartbeat, the 

posterior probability was computed for each mesa function, and the mesa function with 
highest probability was assigned the label R. Finally, given the R wave (width, amplitude) 

and information about the context of the heart beat (rhythm, amplitude ratio with 

previous/next beat…), a knowledge-based decision tree was used for deciding whether this 
heart beat was a normal beat or a ventricular beat. 

                                                
IV “Normal” beats should be more accurately termed “non-ventricular”, since they can exhibit anomalies. 

However, we will follow the accepted terminology in cardiography. 
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Figure 14 

Procedure for assigning the R label 
 

The labeling procedure was tested on two international databases, the AHA database and the 

MIT database; the results are shown on Table 2. They are better than results obtained by state-
of-the-art published methods [2], and they provide a substantial improvement over results 

obtained by commercially available programs on the same databases [8]. 

Normal Beats Ventricular Beats  

MIT Database AHA Database MIT Database AHA Database 

Number of normal beats  86,071 131,949 4,771 11,407 

Sensitivity (%) 99.80 99.68 91.72 87.77 

Positive predictivity (%) 99.47 98.95 95.46 95.93 

Table 2 
Result of R wave assignment and heart beat labelling on MIT and AHA database. 

Sensitivity: S = TP

TP + FN
 where TP is the number of true positives and FN he number of 

false negatives; Positive predictivity: P =
TP

TP + FP
 where FP is the number of false positives.  

4.5.2. Labeling P, Q, S and T waves of non-ventricular heart beats 

A similar procedure was applied to the labeling of the P, Q, S and T waves of non-ventricular 

beats. Four classifiers computed an estimate of the probability for each mesa function to 
belong to one of the classes (Figure 15). The label of the most probable class was assigned to 

the mesa function. Table 3 summarizes the data pertaining to each classifier. To the best of 

our knowledge, no algorithm performing the automatic labeling of the P, Q, S, T waves has 
ever been published. 



 

22 

 

 

The validation of this last part of the algorithm could not be performed on different databases 

because no database with P, Q, S, T labels is publicly available at present. Nevertheless, these 

results, obtained on the private database of Ela Medical, are very satisfactory. 
 

 Hidden 
neurons 

Training 
set size 

Test set 
size 

Misclassification 
rate on the 

training set (%) 

Misclassification 
rate on the 
test set (%) 

P wave classifier 3 1464 1710 0.3 0.5 

Q wave classifier 3 600 290 2.8 2 

S wave classifier 3 956 824 2 1.5 

T wave classifier 5 2238 2506 0.5 0.8 

Table 3 
Architecture of each classifier for labeling P, Q, S and T waves. 

 

 
Figure 15 

Procedure for labeling the P, Q, S and T waves. Since the heartbeat is modeled with 6 mesa 
functions, one of them is rejected by the classifier, hence assigned the label X 

 

4.6. Application to 2-D data 

The analysis of electrophysiological signals or electroencephalographic signals is more and 

more frequently performed in the time-frequency domain. Signals are wavelet-transformed, 
and the resulting map is analyzed in terms of time-frequency patterns of activity, arising in the 

form of localized “bumps” in the 2D-space of the map, which experts relate to the cognitive 
task being performed, or to the mental state of the patient. Thus, those “bumps” are the 2D- 

equivalents of the “waves” described in the present paper. The time-frequency maps arising 

from electrophysiological recordings in the olfactory bulb of rats while they were trained to 
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recognize odors were modeled as described in the present paper ([17], [18]); the modeling 

provided a very sparse representation of the areas of interest on the map, from which 

automatic discrimination between rats that had been trained to recognize an odor and “naïve” 
rats was performed. 

In a completely different context, EEG recordings of patients who developed Alzheimer’s 
disease one year and a half after the recording, and EEG of control subjects, were modeled by 

our technique [19]; the resulting representation allowed automatic discrimination between the 

two groups of recordings, thereby opening new opportunities for early detection of the 
disease. The detailed description of these applications is far beyond the scope of the present 

paper. 

5. Conclusion 

Signals are frequently modeled as parameterized linear combinations of functions such as 

wavelets, radial basis functions, sigmoids, etc. Orthogonal Forward Regression performs that 
task efficiently when the parameters of the functions are not adjustable, so that the model is 

linear in its parameters. In the present paper, we addressed the problem of designing models 
that are nonlinear with respect to their parameters, i.e. models where both the parameters of 

the functions that are combined linearly, and the parameters of that linear combination, are 

adjusted from data. Moreover, an additional constraint was taken into account, namely, the 
intelligibility of the model in terms of the (biomedical) significance of the functions that build 

up the model, for 1D- and 2D signals that exhibit peaks and troughs that have a definite 
meaning. We described a generalization of Orthogonal Forward Regression, for efficient 

nonlinear feature selection, and we defined a new family of very flexible parameterized 

functions, called Gaussian mesa functions. We illustrated the method by modeling long-
duration electrocardiographic signals, where each wave of a heartbeat recording was 

successfully modeled by a single function, allowing the subsequent assignment of a medically 

meaningful label to each function. The method has been applied to the modeling of time-
frequency maps of electrophysiology and electro-encephalography data; in the latter case, 

early detection of Alzheimer’s disease was performed successfully. 
.
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APPENDIX 1 
Orthogonal Forward Regression (OFR) 

 
 

Since the paper describes a generalization of Orthogonal Forward Regression, readers may 
find a description of the latter useful. 

As mentioned above, OFR is a three-step method (Figure 1): 

• generation of a library D of feature functions from Ω, 

• selection of M functions gi{ }
i=1,..M

chosen from D for the modeling of f, 

• estimation of the parameters !
i
,"

i{ }
i=1..M

 by minimization of the least squares 

modeling error J computed on the training set. 

 

 
Figure 16 

Graphical representation of the OFR algorithm followed by nonlinear optimization  

 

1. Library construction 
The construction of the library D of candidate features is performed by discretizing the space 

Ω, which amounts to discretizing the set of the parameters Γ. To that effect, it is necessary to 

choose a discretization step that is as small as possible in order to accurately represent Γ, 

albeit limited by the computational complexity that results from the number of candidate 
functions Nb of the library. 
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2. Gram-Schmidt orthogonalization for feature selection 

During the selection step, the parameters !
i{ }

i=1..M
 of the candidate functions are fixed. The 

model is thus linear in its adjustable parameters, which are the !
i{ }

i=1..M
:  

 

!f = ! ig" i
i=1

M

#           (21) 

One can thus rank the Nb candidate features of the library D in order of decreasing relevance, 
given the data of the training set, and select only the M most relevant functions. That requires 

M iterations of the following Gram-Schmidt orthogonalization algorithm: 

1. select the most relevant waveform g!  from D, 

2. orthogonalize the function f with respect to g! , 

3. orthogonalize the library D with respect to g! . 

2.1. Iteration n = 1 

1) Selection of g!
1

 

The function g!
1

is selected from the library 1D = D as follows: g!
1

is the function that has the 

smallest angle with the function f in observation space, i.e. in the N-dimensional space where 

the components of vector f are the N observed values fk of f present in the training set: 

g! 1
= arg  max

g! "D
cos

2
f ,g!( )( )   where  cos2 f ,g!( ) =

f ,g!
2

f
2
g!

2
   (22) 

with 

f ,g! = fkg! xk( )
k=1

N

"    and   f
2
= f , f = fk

2

k=1

N

!      (23) 

The function g!
1

is the first feature of the model; in the following, it is denoted as u
1
= g!

1

. 

The information present in f that is still to be modeled (the residual) lies in the null space of 
u1. Therefore the next two steps consist in projecting the function f and the library 1D onto the 

null space of u1. 
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Figure 17 

Orthogonalization with respect to u1 

 

2) Orthogonalization of f with respect to u1 (Figure 17) 

f is the sum of a vector of the space generated by u1 and the residual vector r2 in the null space 

of u1:  

f = f ,u
1
u
1
+ r

2
         (24) 

3) Orthogonalization of D  

The new set 2D is computed as the set of functions 2g! , where 2g!  is the part of the 

functions 1g! "
1
D  that lies in the null space of the selected function g!

1

= u
1
: 

2
D =  

2
g! /   

2
g! =

1
g! "

1
g! ,u

1
u

1
  ,  

1
g! #

1
D { }      (25) 

At that point, r2 must be expressed as functions of 2D. To that effect, the same steps 1) 
2) and 3) will be applied with the function r2 and the library 2D. 

2.2. Iteration n 

When iteration n starts, functions g! 1 ,...,g! n"1( ) of D are selected, and the orthogonal basis (u1, 

u2, …,un-1) is built so that the vectors g! 1 ,...,g! n"1( )  are in the subspace generated by the 

vectors (u1, u2, …, un-1):  

 

f
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span(u1,...,un!1) = span(g" 1 ,...,g" n!1 )        (26) 

The functions that belong to nD lie in the null space of span(u1,...,un!1) . 

n
D =

n
g! /

n
g! =

n"1
g! "

n"1
g! ,un"1 un"1,

n"1
g! #

n"1
D{ }     (27) 

The procedure at iteration n is as above: 
1) Selection of g! n  

The element of nD that has the smallest angle with function rn is selected:  

g! n / cos
2
r
n
,
n
g! n( ) = max

n
g! "Dn

cos
2
r
n
,
n
g!( )( )       (28) 

Denoting u
n
=

n
g! n , the set of functions (u1, u2, …, un) is an orthogonal basis of the 

space generated by g! 1 ,...,g! n( ) . 

2) Orthogonalization of rn  

The part of the function to be modeled that remains to be explained is rn+1, located in the 
null space of span(u1,...,un ) ;  rn+1 is computed as: 

r
n+1

= r
n
! r

n
,u

n
u
n
         (29) 

3) Orthogonalization of nD  

Similarly, the set n+1D is computed as the part of the elements of D located in the null 

space of 
  
span(u

1
,...,u

n
) : 

n+1
D =

n+1
g! /

n+1
g! =

n
g! "

n
g! ,un un ,

n
g! #

n
D{ }

     =
n+1
g! /

n+1
g! = g! " g! i ,ui ui

i=1

n

$ ,g! #D
%
&
'

(
)
*

     (30) 

2.3. Termination n = M 

The algorithm terminates when all Nb functions are ranked. However, it is not necessary to 
rank all candidate functions, since the only relevant functions are functions whose 

contributions to the model are larger than the noise present in the measurement of the signal 

to be modeled; based on that criterion, an efficient termination condition was proposed in 
[13], which stops the process after a number of iterations M ≤ Nb . 

Whatever the termination criterion, at the end of the algorithm (iteration n = M), M functions 
of D (g! 1 ,...,g! M )  are selected, and the orthogonal basis (u1, u2, …uM) is generated. 

One can write: 
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r
M +1

= r
M
! r

M
,u

M
u
M

        (31)  

By summing over the M equations (29) the following relation is obtained: 

f = rn ,un un
n=1

M

! + rM +1
        (32) 

Since the set of vectors was constructed such that span(u1,...,uM ) = span(g! 1 ,...,gM ) , there is a 

single family 
 
!
i{ }

i=1,...M
"!  such that:  

f = ! ig" i
i=1

M

# + rM +1
         (33) 

One writes: 

 

!f = ! ig" i
i=1

M

#           (34) 

Thus, the model 
 
!f  is built from the M most relevant waveforms g! 1 ,...,g! M( )  with the M 

parameters
  
!

1
,!

2
,...,!

M
( ) .  

3. Optimization 

The final step of the OFR procedure consists in estimating the parameters !
i

*
,"

i

*{ }
i=1,...M

 that 

minimize the least squares cost function: 

 

!
i

",#
i

"{ }
i=1,...M

= argmin
#$!
! $%

J( #
i
,!

i{ }
i=1,...M( )        (35) 

with 

 

J = fk ! !f xk( )( )
2

k=1

N

" = fk ! # ig$ i xk( )
i=1

g$ i %&

M

"
'

(

)
))

*

+

,
,,

2

k=1

N

"      (36) 

Therefore the model obtained with OFR algorithm is:  

 

!f = ! i

"

i=1..M

# g
$ i
"           (37) 
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