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ABSTRACT

The honeybee olfactory pathway is an attractive system for modeling: it is relatively simple,
and it is well described functionally and morphologically. Moreover, due to the conservation
of the olfactory structure through phylogeny, models may bring information of generic
interest. From the point of view of behavior, this system has the ability of encoding the
sensory messages into stable representations, and extracting key features from them. The
neural bases of these mechanisms are still largely unknown; the purpose of the present paper
is to present three different models of the same system, which make use of the same corpus
of morphological and electrophysiological data, but which incorporate these data with
different levels of details. We show the interrelations between these models and the specific
contribution of each of them to the modeling of the olfactory pathway. We show that the
design of the simplest model capitalized on the results of the previous ones, and that it
suggests mechanisms for simultaneous generation of stable internal representations and key
feature extraction.

1. INTRODUCTION

Any system, whether natural or artificial, which has to process signals with high
variability in space and time, must make use of robust feature extraction
mechanisms, leading to efficient pattern recognition. Since the survival of animals
depends critically on fast and appropriate responses to sensory inputs, evolution has
selected elaborate neural mechanisms which are not yet fully understood.

1.1. The coding problem

The problem of feature extraction is involved in a more general question about
living systems that can be summarized as follows :
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How can an input, that may be complex
(with a large amount of data) and
fluctuating in time, elicit an adapted and
stable behavior? Behavior involves both
information coding and information
storage (and recall). In the present paper,
we focus on the coding process, and we
investigate possible neural mechanisms
whereby a stable behaviour may result
from the extraction of the salient features
of the stimulus and the generation of a
stable internal representation.
Symbolically, it can be represented as
indicated in Figure 1.

Figure 1

Symbolic representation of the coding problem: an
input signal, complex and fluctuating in time may
elicit a behavior with a lower degree of
complexity and stable.

1.2. The olfactory system: why?

Although the goal is to elucidate generic principles which may underlie the
information processing mechanisms, it is mandatory to use precise anatomical,
neurophysiological and behavioral data as stepping stones towards designing
biologically relevant models. Thus, the biological system to be modeled must
exhibit general features shared by other living systems, and must be well known
experimentally. In this respect, the olfactory system is an attractive candidate. Its
discrimination and recognition performances are outstanding : it is determinant for
nutrition, reproduction and protection against predators. Moreover, the olfactory
signals may be very complex (for example several hundreds of volatile chemicals can
be detected by chromatography for a sunflower aroma (Etiévant et al., 1984)), yet the
decision based on olfactory information is crucial: the consequences of a mistake can
be fatal. It is nevertheless relatively simple, as compared with other sensory
modalities. The joint simplicity and efficiency of the olfactory pathway have lead the
evolution to conserve its main features through the phylogeny, from invertebrates to
vertebrates (Masson & Mustaparta, 1990; Shepherd, 1991; Hildebrand & Shepherd,
1997). The architecture of the olfactory system may be described sketchily as a three-
layer structure; of specific relevance to the present work is the intermediate layer
(namely, the olfactory bulb and the antennal lobe, in vertebrates and insects
respectively), which is known to be involved in contrast enhancement, noise
reduction, and feature extraction from the signal  transmitted by the receptor cells
(Holley & Mac Leod, 1977; Boeckh & Ernst, 1987; Masson & Mustaparta, 1990;
Kauer, 1991).
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1.3. The honeybee: why?

Since the olfactory tracts have common features across species, a better
understanding of insect olfaction is of general biological interest and may be relevant
to olfaction in general. In this context, olfaction of the honeybee is particularly
appealing: (i) honeybee foraging behavior, which is crucial at the levels of both
individual and social survival, is based on discrimination among complex odors
which is the result of a process involving the extraction and the recall of key features
(for a review, see Masson et al., 1993); (ii) in order to gain insight into the
mechanisms underlying the extraction of such key features, a set of neurobiological
experiments have been performed at various scales of observation, aiming at
understanding how the chemical messages are processed (Masson et al, 1995).
Capitalizing on the collected data, several simulation or analytical models of the bee
antennal lobe have been proposed (Kerszberg & Masson, 1995; Malaka, 1995;
Masson & Linster, 1996; Linster & Smith, 1997; Quenet et al., submitted). These
simulations suggest mechanisms for feature extraction in the glomerular layer.
Computational models of the insect antennal lobe (Rospars & Fort, 1994) and of the
olfactory bulb of mammals (Schild, 1988; Li & Hopfield, 1989; Freeman, 1991;
Anton et al., 1991; Linster & Gervais, 1996; Linster & Hasselmö, 1997) point to
the same direction.

2. BIOLOGICAL DATA

2.1. The concept of key features

It has been shown experimentally that the animal may respond by a stable behavior
to variations in the composition of the odorant signal (Masson et al., 1993). In
addition, experiments show that animals do not react to the whole set of chemicals
present in the stimulus (Pham-Delègue et al., 1990), but to the presence, in more or
less specific proportions, or to the absence, of specific components of the odorant
mixture; the characteristics on which the animals seem to base their discrimination
are called "key features" (Pham-Delègue et al., 1993). Hence, two stimuli which are
very different chemically, but exhibit the same key features, may elicit similar
behaviors, whereas two stimuli which are very similar chemically, but do not have
the required key features, will be considered as different by the animal (Pham-
Delègue et al., 1991). Taken together, these experimental observations strongly
suggest that the extraction of key features is performed together with the emergence
of a stable internal representation, robust with respect to fluctuations of the input
signal.
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2.2. The olfactory pathway

2.2.1. The 'three-layer structure'

The olfactory system features two subsystems (Shepherd, 1991; Masson &
Mustaparta, 1990), namely, the main olfactory system in vertebrates (or generalist
system in invertebrates), and the accessory (vomeronasal) system in vertebrates (or
specialist system in invertebrates), devoted to the processing and recognition of
sexual odorants (pheromones). Here, we focus on the main (or generalist) system
only.

In vertebrates and invertebrates, the (generalist) olfactory pathway can be
sketchily described as a three-layer system (Holley & Mac Leod, 1977; Masson &
Mustaparta, 1990; Kauer, 1991; Farbman, 1992; Laurent 1996):
• the sensory neurons build up the first layer.
• the second layer (the antennal lobe of insects, the olfactory bulb of mammals)

features relay neurons, whose connections with the axons of sensory neurons are
located in neuropilar structures called 'glomeruli'.

• the third layer is built up of the cortical regions where axons of neurons from the
second layer project (mushroom bodies in insects, piriform cortex in mammals).
It is generally admitted that the first layer encodes the olfactory molecular signal

into electrical signals which are conveyed to the second layer. In the latter, an
internal representation ('olfactory image') is formed, and discriminant features are
extracted from the olfactory signal (Shipley & Constanzo, 1984; Royet et al., 1987;
Masson et al., 1993; Cinelli et al., 1995; Joerges et al., 1997). Long-term storage of
olfactory images is generally considered to take place in the third layer (Masson &
Mustaparta, 1990; Bower, 1991; Kauer, 1991; Hasselmö, 1993; Menzel et al.,
1991).

2.2.2. The Olfactory Receptor Neurons

Odor transduction takes place primarily within cilia extending from the dendrites of
the Olfactory Receptor Neurons (ORN). In the honeybee, these neurons are located in
hairs and placodes on the antennas, while in vertebrates, they form a sensory
epithelium in the nasal cavity. When an animal inhales odorant molecules, they are
fixed (with the help of Odor Binding Proteins -OBP, whose role is still a matter of
research -Danty et al, 1997) on receptor proteins set in the membrane of the
receptors' cilia. In vertebrates, activation of olfactory receptors induces responses in
olfactory receptor neurons via an adenylate cyclase cascade (Sklart et al, 1989)
mediated by specific G-proteins (Jones & Reed, 1989). A similar mechanism is very
likely to exist in insects (Breer et al, 1988; Prestwich, 1993). Moreover it has been
shown that the honeybees have putative olfactory receptor proteins similar to those
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of vertebrates (Danty et al., 1994). The mechanisms underlying the initial encoding
of general odors in the receptor cells are still poorly understood, and a number of
basic questions remain to be solved. Single cell recordings indicate that the antennal
olfactory receptor cells of the worker honeybee respond to several olfactory stimuli
(Vareschi, 1971; Akers, 1992) like the receptors cells in vertebrates. Yet, a large
multigene family encoding odorant receptors on ORNs has been identified (Buck &
Axel, 1991), which indicates that odor discrimination may derive, to a large extent,
from the differential ligand binding properties of as many as 1000 different receptor
types; moreover each odorant receptor gene is expressed by only ~0.1% of the ORNs
population, suggesting that each ORN may express only a single receptor type. It is
thus possible to define families of ORNs, from the molecular point of view. The
ORNs send their axons to the glomerular layer, where they synapse with the
dendrites of interneurons in the glomeruli. Molecular investigations also give
insight into the topology of the projections of the sensory neurons to the olfactory
bulb: it has been conjectured from experimental evidence (Ressler et al., 1994;
Vassar et al., 1994) that the axons from sensory neurons expressing mainly a given
receptor converge on very few glomeruli, if not a single one.

2.2.3. The Antennal Lobe Neurons

The glomeruli are invariant and identifiable neuropilar structures. For instance there
are 165 of them in the honeybee, and each of them has a definite, invariant shape and
location (Arnold et al., 1985). The first idea about the coding of odors in the
glomerular layer was that each glomerulus might be specialized in the recognition of
a given odor: it is, for instance, more active (in the sense that the synapses it
contains are more active) than the others for that odor. Radioactive tracing
experiments have shown that the 'code' at this level is not that simple: for a given
input signal (made of pure substances or complex mixtures of molecules, included
the odorants that are biologically relevant for the animal, such as the royal
pheromone for instance) the activity appears to be widely distributed among the
glomerular population, and these patterns of glomerular activities change from one
individual to the next (Arnold & Masson, 1987; Nicolas et al., 1993). Nevertheless,
the glomerulus is still considered as a functional unit, which is strongly suggested
by the above-mentioned molecular results for vertebrates, and also by the
relationships between the structure and the function of the interneurons of the
antennal lobe in the honeybee (Masson et al, 1993). Local interneurons build up the
majority of the neurons in the lobe (~90%), and each category of local neurons
(without any axon) and output neurons (with an axon projected to the mushroom
bodies) can be subdivided into 2 main types which differ by the spatial distribution
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of their branching patterns within the glomeruli (Fonta et al, 1993). All local
interneurons are pluriglomerular, but the majority of them (~80%) (localized local
interneurons) differ from the others (delocalized local interneurons) by a high density
of neurite arborization in one particular glomerulus. Similarly, a part of the output
neurons (localized output neurons) have dendrites invading only one glomerulus,
whereas the others (delocalized output neurons) are pluriglomerular. From the
functional point of view, it has been showed from intracellular recordings (Sun et al.,
1993) performed while an odorant -pure or mixture- is applied to the corresponding
antenna, that the tendency to respond selectively to odors is expressed only in the
category of localized antennal lobe neurons (local and output), as indicated in
Figure 2. This might confirm that the related glomeruli represent functional subunits
which are involved in the coding of the odorants.

Figure 2

Sketchy representation of the four
different types of honeybee antennal
lobe neurons, characterised both
morphologically and functionally.
The Type A  local interneurons and
output neurons are the delocalized
neurons, with a dendritic tree
regularly distributed amongst the
glomerular population. The type B
local interneurons and output neurons
are the localized neuron, with a
dense arborization in one glomerulus,
exclusive in the case of the output
neurons. From the functional point of
view, specific responses to odorants
are exhibited by the localized
neurons only.

2.2.4. The main functional hypothesis

We have described in section 2.1 the basic observations that we would like to
account for, relating the behavior of the animal to the chemical stimulus. The main
assumption is the following: the first step of the decision-making process occurs in
the olfactory tract, especially at the level of the glomerular layer, where
stabilization and key feature extraction are supposed to take place through a
spatially and temporally organized activity of the glomeruli. We next focus on three
different possibilities to use the ingredients, described in section 2.2, in models of
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the antennal lobe layer, in order to investigate the emergence of spatio-temporal
olfactory images on the 'glomerular pixels'.

3. THE MODELS

3.1. A few preliminary remarks on modeling

At present, one of the main difficulties in modeling neural networks is the choice of
the complexity necessary for the model to account for experimental results. In
physics, this difficulty has long been overcome: it is unquestionable that a model of
the behavior of a microprocessor does not require modeling the nucleus of silicon
atoms. When modeling a neurobiological system, the situation is not that clear, and
the level of details which should be taken into account for modeling a given
behavior is still a debatable question. Therefore, any model results from a tradeoff
between complexity and plausibility: drastic simplifications may lead to models that
are - relatively - easy to understand and analyze mathematically, but which are not
plausible from a biological point of view; conversely, models including a lot of
details may be intractable mathematically, so that they can be investigated only by
heavy numerical simulations which are not guaranteed to give any real insight.
Therefore, at the present time, the
modeler has to face the challenge of
choosing the appropriate level for his
model on the scale of complexity
versus plausibility, as shown
symbolically on Figure 3. The three
models that will be discussed here
have different positions on this scale.
Their presentation is organized
chronologically, in order to show
clearly how the results of the first one
influenced the second one, and how
the results of the second allowed to
build the third.

Figure 3

Building a formal model requires a tradeoff
between various requirements.
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3.2. A synaptic model of the glomerular stage

This model of the honeybee antennal lobe was built in order to be as close as
possible to the biological knowledge. It is completely described in (Kerszberg &
Masson, 1995).

3.2.1. The ingredients of the model

In this model,
• each glomerulus is viewed as a group of synaptic contacts between receptor

cells, local interneurons  and output neurons;
• the circuit is built up in a random fashion, for both the neurons' types and

synapses' types and weights,  with statistical constraints fitting the anatomical
data;

• the four types of interneurons are modeled. The huge majority of local
interneurons are localized ,i.e. make synaptic contacts mainly within one
glomerulus. The others are delocalized, i.e., have synaptic contacts distributed
more or less evenly among glomeruli; the same holds true  for the output
neurons which have an axon;

• the receptor cells form excitatory axodendritic synapses in the  glomeruli with
the local interneurons only:

• nonlinearities arise at the synaptic contacts between the interneurons, which
are described in great detail. They are either excitatory or (in majority)
inhibitory, dendro-dendritic or reciprocal, with a probability of release per unit
time depending on the local potential of the presynaptic dendrite according to a
sigmoid law;

• the signal propagation along the dendrites is assumed to be passive. Each
dendrite section is modeled by a cable equation; inside the glomeruli, the
synapses shunt the dendrites to the external medium, which is supposed to be
isopotential;

• an input signal is modeled by a series of spikes at a given mean frequency along
the axons of the excitatory receptor cells. Two different input signals have
different mean frequencies along different fibers (distributed among the whole
glomerular population).
A simulation consists in solving the differential cable equations with the non-

linear synapses in a given (random) configuration of the synaptic contacts (according
to probabilities compatible with the known biological data), without or with input
signals.

3.2.2. Computed quantities

• The instantaneous averaged potential of all dendrites in each glomerulus;
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• the instantaneous number of active synapses in each glomerulus;
• the membrane potential at the soma of the output interneurons;
• the Fourier spectrum of the above temporal signals.

3.2.3. Main results

3.2.3.1.  A complex spontaneous activity

The mean glomerular potentials as well as the number of active synapses exhibit
oscillations, with a high density of Fourier peaks, a few of them being higher than
the others. Some synchronization occurs between some glomeruli.

3.2.3.2. Effects of input signals

The application of an input A leads the model to oscillate in a different way than in
the previous case: some of the 'eigenfrequencies' of the model seem to be enhanced,
while others vanish. Note that these 'coding' frequencies are not necessarily close to
the mean frequency of the input signal. Another input B applied on different input
fibers with another mean frequency leads to an oscillatory behavior based on other
eigenfrequencies. Interestingly, the glomerular synaptic activities exhibit
inhomogeneities (some glomeruli are more 'active' than the others), which are not
the same when A, B or (A&B) are applied, which is consistent with a non-linear
'glomerular representation' of the olfactory input.

Moreover, the membrane potential at the soma of the localized output
interneurons also exhibits input-specific responses, consistently with
electrophysiological recordings (see section 2.2.3). Finally, the most striking
observation concerns the responses of localized output neurons during the
application of an input signal : when two (or more) localized output neurons have
their dense dendritic arborization in the same glomerulus, the evolution of their
somatic membrane potential in time are almost identical.

3.2.4. Transition to the next model

With the same symbolic representation as introduced in section 1.1, the main result
brought by this formal model of the olfactory pathway  can be summarized in Figure
4. If the principles of the coding can be understood as a sort of selection of some
spontaneous dynamical states by the input signal, the relationship between the
input signal and the membrane activities of the local output neurons is intractable:
the complexity of their behavior is too high. A fortiori, this model cannot be helpful
in order to find the conditions that input signals have to fulfill in order to lead to a
stable behavior of the output neurons.
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Nevertheless, the last result mentioned in section 3.2.3.2 is particularly
interesting since it gives a new argument for considering a glomerulus as a
'functional unit'.

If we want to address the
questions of the coding of the
input signals and of the transfer of
this information to the next step
by the localized output neurons,
we do not need to consider more
than one such neuronal unit per
glomerulus. Extending this
argument to the localized local
interneuron leads to the second
type of model, described in the
next section.

Figure 4

The symbolic representation of the main
results of the synaptic model of the
glomerular layer. A) without input signals,
its spontaneous behavior is oscillatory
with a high number of frequency
components. B) With an input signal at a
mean frequency, some of the previous
eigenfrequencies are enhanced while
other vanish.

3.3. A simplified synaptic model - towards a neuronal model of
glomeruli

This model of the two first stages of the honeybee olfactory pathway includes the
receptor layer. The glomerular layer has been simplified in comparison with the
previous one: all types of interneurons are represented, but there is  only one unit
per glomerulus which models the localized interneurons (related to that glomerulus)
and another unit modeling the localized output neurons. Various versions of this
model have been described in (Linster et al., 1994; Linster & Masson, 1996;
Masson & Linster, 1996).

3.3.1. The ingredients of the model

3.3.1.1. The receptor layer

According to the commonly assumed 'across fiber code' of the peripheral
representation of an odor stimulus (Vareschi, 1971; Ackers & Getz, 1993), each
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formal receptor neuron models a type of ORNs with similar molecular sensitivity;
the different receptor neurons have overlapping molecular spectra. These receptor
neurons are thus more or less excited by a mixture of odorants modeled by a vector
of binary values (0 or 1). They project to the glomerular layer in the following way:
since the number of receptor neurons is smaller than the number of glomeruli in the
model, a single receptor neuron send the same excitatory input to several glomeruli
(the same number of glomeruli per receptor neuron).

3.3.1.2.  The glomerular layer

• Each glomerulus is the site of the synaptic contacts;
• the four types of interneurons are modeled in a fixed architecture,  with the

constraint of having only one localized local interneuron per glomerulus (it
receives excitatory inputs from its glomerulus and sends inhibitory inputs to the
other glomeruli), and one localized output neuron (it receives excitatory or
inhibitory inputs from its glomerulus, depending on the variant of the model);
moreover, there is only one delocalized local interneuron and one delocalized
output neuron in the whole model;

• there is an additional localized local interneuron which is excitatory with
synapses only in its corresponding glomerulus1;

• nonlinearities occur at the level of the neurons themselves. A firing probability
is assigned at each time step to each neuron, as a function of its membrane
potential at this time; the membrane potential obeys a difference equation
including a discrete-time integrator of all the inputs to the neuron at this time2;

• the receptor neurons form excitatory connections with the local interneurons
only (excitatory and inhibitory)

• the synaptic weights and the transmission delays are chosen randomly around
mean values.

• an input signal in this model is a vector of M components, equal to 0 or 1,
modeling a chemical input signal, mixture of M 'molecules' (1 if the molecule is
present, 0 if it is absent) applied to the receptor neurons which, in turn, send an
excitatory information to the glomeruli. The chemical input signals, and
consequently the receptor activities, are constant in time during a simulation.

                                                
1  Such an element can be assumed to exist according to some experiments (Malun, 1991a; Malun,
1991b, Kirn & Boeckh, 1994), but without any experimental evidence.
2 From an electrophysiological point of view, the spiking or non-spiking character of a local interneuron
is still a matter of discussion.



12

A simulation consists in solving the differential membrane equation at the soma
of the different neurons, taking into account their non-linear firing probability, in the
presence or absence of inputs.

3.3.2. Computed quantities

• The instantaneous activities of the different neurons;
• the averaged activities of the different neurons.

3.3.3. Main results

3.3.3.1. The similarity between simulated and experimental  neuronal activities

The simulated and experimental intracellular 'time-recorded' neuronal activities are
comparable from two points of view: the formal delocalized output neurons exhibit a
time-dependent activity which is only slightly affected by the application of an input
signal, which is consistent with experimental observations. On the contrary, the
localized neurons, local (inhibitory) or output, have a clear response (by an increase
or a decrease of the spiking frequency, depending on the variant of the model) to the
application of an input signal, which is also consistent with the biological data.

3.3.3.2.  The emergence of stable patterns of the averaged neuronal activities

Due to the lateral inhibitory connections, localized local interneurons compete with
each other. This competition may eventually lead the neurons to a stable pattern of
activities, in which some local interneurons 'win' and stay activated and others 'lose'
and stay inhibited by their neighbors. These patterns of stable activities have been
observed both for the localized local (inhibitory) interneurons and for output neurons
(Linster et al., 1994). At this level, it is very remarkable that the patterns of
activities of the localized local (inhibitory) interneuron and the corresponding
localized output neuron (they intensively invade the same glomerulus) are closely
related. Depending on the variant of the model, they are either almost the same
(both are highly active simultaneously), or almost in opposition (only one of them
is very active)

3.3.3.3. Other results

Three additional results are of interest here. First of all, the effect of the modulation
of the lateral inhibition is the following: the higher the lateral inhibition, the sparser
(and thus the clearer) the pattern of activity of the output neurons. Then, the variant
of the model which considers an inhibitory action on the localized output neuron by
its glomerulus leads to neuronal activities whose statistical distributions are close to
the experimental ones (Masson & Linster, 1996), the comparison is much better
than when an excitatory action is taken into account. Finally, this model can easily
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exhibit a property of short term memory, thanks to its assumed excitatory localized
local interneuron (Linster & Masson, 1996).

3.3.4. Transition to the next model

Figure 5 shows symbolically the main information conveyed by this model about
coding. The receptor layer forms an intermediate step of coding which is also
represented here. The coding principles are clearer in this case than in the first
model: (i) the patterns of activities of the output neurons may be stabilized in
response to a stable input signal; (ii) if the output neurons convey the information to
the next layer, the elements that are responsible for the formation of the stable
activity patterns are the localized local inhibitory neurons. Both the activities of
these last neurons and the weights of their synaptic interactions determine for the
coding pattern.

This model suggests a transition between the expression of the glomerular
activity in terms of synaptic activities inside the glomerulus, and the expression of
the glomerular activity in terms of spiking activity of its corresponding localized
local inhibitory interneuron (which indeed represents a family of such biological
cells). This model, however, is still too complex to convey a clear picture of the
input-output relationship, which is the only way towards expressing a condition of
output invariance. Thus, the understanding of the coding properties of a formal
olfactory-like model requires additional simplifications.

From the conclusions drawn
from the above two models, one
may infer that it might be
legitimate to retain in the model the
formal localized local interneurons
only, each of them modeling now a
functional glomerulus. This is the
first step towards the third proposed
model of the glomerular layer,
described in the next section.

Figure 5

The specificity of the neuronal model of the
glomerular layer is that it shows the possible
stabilization of the neuronal activities in
response to a stable input. The intermediate
signal represented in the figure reminds that
the receptor layer is modeled here.
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3.4. An analytically tractable neuronal model of glomeruli

This model of the honeybee antennal lobe is based on a further simplification of the
previous ones. As a consequence, the new model is fully tractable analytically;
therefore an in-depth understanding of its coding properties can be gained. A detailed
presentation of the model and of its properties can be found in (Quenet et al., 1997)

3.4.1. Ingredients of the model

• As in the previous models, a glomerulus is still the site of synaptic contacts,
but it is represented functionally by a single unit which corresponds to its
localized local inhibitory interneuron;

• a receptor neuron send excitatory inputs to a single glomerulus and a
glomerulus receives inputs from a single receptor neuron: this bijective
connection is in accordance with the results of molecular biology obtained in
vertebrates, as mentioned in section 2.2.2, assuming that a receptor neuron
figures a group of ORNs expressing the same protein on their membrane surface;

• the only formal interneuron modeled here, the localized local interneuron,
receives excitatory inputs from the receptor neuron corresponding to its
glomerulus and inhibitory inputs from its neighbors. It sends in turn inhibitory
inputs to them. It can be called a 'glomerular unit';

• the 'glomerular unit' is a binary unit characterized by a probability of being at 0
or 1 which is a non-linear function of its mean potential, computed by adding
all the excitatory and inhibitory inputs it receives. This function is either a
sigmoid (thereby modeling the presence of internal noise) or a Heaviside
function (thereby assuming that no internal noise is present);

• for simplicity, all synaptic weights between the glomerular units are equal to -1,
all delays between neurons are equal to 1; the update dynamics is synchronous;

• an input from the receptor neurons to the glomerular layer consists of a vector of
integers proportional to the number of active cells in the families of ORNs
represented by the receptor neurons.
A simulation consists in applying an input, stable or changing with time, and

in computing at each time step the successive vectors of activity of the glomerular
units. However, the essential feature of this model is that simulations are used as
illustrations only, since the behavior of the model can be understood analytically.

3.4.2. The main properties

It is known that the steady states of a system of binary units with symmetric
connections are cycles of maximum length two (Peretto, 1992). Thus, for a given
input, when a steady state is reached, the activity of a glomerular unit, integrated on
two update steps, is independent of time. It can also be proved that the glomerular
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units that oscillate in the steady state, do so in phase. Finally, it is possible to
define a two-time Lyapunov function which is a non-increasing function of time,
constant in steady states.

When there is internal noise in the model, the dynamics of the glomerular units
can be described by a Markov Chain (See for instance Seneta, 1981), whose limit
vector of probability of transition between two instantaneous states can be expressed
as a Boltzmann-like function of the Lyapunov function of these two states (Quenet et
al, 1997.)

3.4.3. The measured quantities

• The activity of the glomerular units integrated during 2 update times;
• the euclidean distances between the vector of the integrated activities and a

reference.

3.4.4. The main results

3.4.4.1. The effects of the lateral inhibition on the coding is completely
understood, without and with internal noise.

It is well known that the lateral inhibition introduces competition between the
neuronal units, leading to a contrast enhancement of their activities. In the present
case, for a model with N glomerular units, we suppose that the receptor neurons
have a fixed activity represented as a vector of integer values. This input signal can
be viewed as an 'image' of N pixels with N+2 'gray levels' (there is a saturation at
N+1). When the steady state is reached, the output consists of cycles of maximal
length 2; since the glomerular units are binary, this output may be viewed as a
spatio-temporal image with only 3 'gray levels'. The gray level reduction between
the input and the output is obtained by thresholding the input to each glomerular
unit by two thresholds, which are the same for all glomerular units. The values of
the thresholds depend both on the initial glomerular activity and on the input
pattern itself. In the absence of noise, a single input pattern may elicit more than one
glomerular image, depending on the initial state. In the presence of internal noise,
the effect of the initial state vanishes in the steady state, which is the glomerular
image that minimizes the Lyapunov function. Note that this minimum can be
degenerated. As a consequence, whatever the input vector, for a given noise level, it
is possible to compute (without any simulation) the probability of emergence of an
output image. Conversely, given an output image, one can find the conditions an
input vector has to verify in order to possibly elicit this precise output pattern. In
other words, we have now a possible approach to the problem of the invariance of
the glomerular activity pattern, as shown in the next section.
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3.4.4.2. Stabilization and key feature extraction from a sequence of inputs
without and with internal noise

A given glomerular activity pattern can be generated by a very large number of
input signals on the basis of the amplitudes of the receptor activities. Therefore, if a
sequence of such inputs is presented when the corresponding glomerular image is
already present, then this image will not change, irrespective of the fluctuations of
the inputs, provided the latter comply with the threshold conditions that uniquely
define the glomerular image. Hence, the model exhibits two properties which are
essential in the context of olfaction: when presented with a sequence of inputs, the
model extracts the key features (in terms of receptor activities) which are common to
the stimuli of the sequence, if any, and, at the same time, produces a stable
glomerular pattern which codes for these common features. These two properties are
clearly apparent on the example of Figure 6. Note that the addition of a small
amount of internal noise not only does not suppress this very interesting property,
but it even allows the system to find the key features earlier than it does in the
absence of noise.

 Figure 6

The properties of stabilization of the glomerular image and key feature extraction. Despite the clear
differences between the successive input patterns, common features are present in the whole sequence
(high activity of receptor 7 and relatively low activity of receptors 14 and 17). With the deterministic
model, after presentation of 7 different inputs, the system stabilizes in a spatio-temporal pattern of
activity featuring a persistently high activity of glomerulus 7 and a persistent quiescence of glomeruli 14
and 17. The presence of a small internal noise even helps the model to code earlier for the key features
mentioned before: in that case the glomerular image appears slightly spoiled.
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3.4.4.3. The quasi-linear property  of the model with noise

We have seen in the section 3.4.4.2 that a small internal noise leads the glomerular
layer to an essentially stable spatio-temporal pattern which codes for the underlying
key features of a stable input pattern or a sequence of different inputs. When this
noise is high, all the coding properties are blurred out: the glomerular layer becomes
insensitive to the inputs. Between these two extreme cases, there is a noise regime
where the model exhibits the following property: the mean activity of the glomerular
units comes close to the mean activity of the receptors themselves. It is shown by
the evolution, versus the noise level, of the distance between the mean activity
vector of the glomerular units and the activity vector of the receptors neurons: it
exhibits a minimum. It is possible to compare this effect to the well known
dithering effect in the signal processing domain (see for instance Sklar, 1988). Thus,
a modulation of the noise level, may lead the same model to fit more or less
precisely the activities of the receptor neurons, the extraction of key features being
performed at low noise level.

3.4.5. Conclusion

The behavior of this model is represented symbolically on Figure 7. Unlike the
previous models, this one is simple enough that it allows an analytic treatment of
the coding properties, of key feature extraction, and of stabilization when the input
signal fluctuates, even within large limits. We have also seen how key feature
extraction and stabilization can be considered as two aspects of the same
phenomenon, i.e. the dynamical property of the model to reach a stable cyclic
attractor; moreover, the conditions on the input signals applied to the model to let
it reach a given attractor can be computed (without simulations).

4. CONCLUSION

In the present paper, we have presented three models of the olfactory tract, with
various degrees of complexity and biological plausibility. The deterministic version
of the last model is at the bottom of the scale introduced in Figure 3. The addition
of an internal noise has pushed it a notch higher, without sacrificing the analytical
approach. The future steps up this scale will be a relaxation of such constraints as
the single value of the synaptic weights and delays, and the synchronous dynamics.
It may be conjectured that the understanding gained with the present model will be
very helpful in understanding the properties of these future versions.
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Figure 7

The analysis of the simple neuronal
model of the glomerular level allows an
understanding of its code  and an
access to a condition of output
invariance. It may be viewed as a step
towards understanding how an output
can be stable while the inputs exhibit a
high variability.

REFERENCES
Ackers, R.P.& Getz, W.M. (1992). A test to identified response classes among olfactory receptor

neurons in the honeybee worker. Chem. Senses, 17, 191-209.
Ackers, R.P.& Getz, W.M. (1993). Response of olfactory receptor neurons in honeybees to odorant and

their binary mixtures. J. Comp. Physiol. A, 173, 169-185.
Anton, P.S., Lynch, G., & Granger, R. (1991). Computation of frequency-to-spatial transform by

olfactory bulb glomeruli. Biol. Cybern., 65, 407-414.
Arnold, G., Budharugsa & S., Masson, C. (1985). Comparative study of the antennal lobes and their

afferent pathway in the worker bee and the drone (Apis mellifera L.). Cell Tissues Res., 242, 503-
605.

Arnold, G.& Masson, C. (1987). Organisation fonctionnelle du lobe antennaire de l'abeille ouvrière
analysée par la méthode du 2DG. C.R. Acad. Sci. [III], 305, 271-275.

Boeckh,  J., & Ernst, K.D. (1987). Contribution of single unit analysis in insects to an understanding of
olfactory function. J. Comp. Physiol. A, 161, 549-565.

Bower, J. (1991). Piriform Cortex and Olfactory Object Recognition. In  Davis J. & Eichenbaum H.
(eds), Olfaction : A model System for Computational Neuroscience (pp. 265-285). MIT Press.

Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: a molecular
basis for odor recognition. Cell, 65, 175-187.

Breer, H.K., Raming, K., Boeckhoff I., (1988), G-protein in the antennae of insects.
Naturwissenschaften, 75, 627.

Cinelli, A.R., Hamilton, K.M., & Kauer, J.S. (1995). Salamander olfactory bulb neuronal activity
observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of
responses evoked by odorant stimulation. J. Neurophysiol.,  73, 2053-2071.

Danty, E., Cornuet, J.M.& Masson, C. (1994). Honeybees have putative olfactory receptor proteins
similar to those of vertebrates. C. R. Acad. Sci. Paris, Life sciences, 317, 1073-9

Danty, E., Michard-Vanhée, C., Huet, J.C., Genecque, E., Pernollet, J.C.& Masson, C. (1997).
Biochemiccal characterization, molecular cloning and localization of a putative odorant-binding
protein in the honeybee Apis mellifera L. (Hymenoptera: Apidea). PEBS Letters, 414, 595-598.

Etievant, P., Azar, M., Pham-Delègue M.H.& Masson, C. (1984). Isolation and identification of volatile
constituents of sunflowers (Helianthus annuus L). J.Agric. Good Chem., 32, 503-509.

Farbman, A.I. (1992). Cell Biology of Olfaction. Cambridge University Press, pp. 282.
Fonta, C., Sun, X. J., & Masson, C. (1993). Morphology and Spatial Distribution of Bee Antennal Lobe

Interneurones Responsive to Odours.  Chemical  Senses, 18, (2), 101-119.
Freeman, W. (1991). Nonlinear Dynamics in Olfactory Information Processing. In Davis J. &

Eichenbaum H. (eds) Olfaction : A model System for Computational  Neuroscience (pp. 225-249).
MIT Press.

Hasselmö, M.E. (1993). Acetylcholine and learning in a cortical associative memory. Neural
Computation, 5, 32-44.



19

Hildebrand, J.G., & Shepherd, G. M. (1997). Mechanisms of olfactory discrimination: converging
evidence for common principles across phyla. Ann. Rev. Neurosci., 20, 595-631.

Holley, A., & Mac Leod, P. (1977). Transduction et codage des informations olfactives chez les
vertébrés. J. Physiol. Paris, 73, 725-828. 

Joerges, J., Küttner, A., Galizia, G., & Menzel, R., (1997). Representations of odours and odour
mixtures visualized in the honeybee brain. Nature, 387, 285-288.

Jones, D. T.& Reed, R. R. (1989). Golf : an olfactory neurone specific G-protein involved in olfactory
signal transduction. Science, 24, 790-795.

Kauer, J. (1991). Contributions of Topography and Parallel Processing to Odor Coding in the Vertebrate
Olfactory Pathway. TINS, 14, (2), 79-85.

Kerszberg, M., & Masson, C. (1995). Signal Induced Selection Among Spontaneous Oscillatory Patterns
in a Model of Honeybee Olfactory Glomeruli. Biol. Cybern., 72, 795-810.

Kirn, C. & Boeckh, J.(1994). Receptor neurons and their synaptic contacts in the antennal lobe of the
cockroach Periplaneta americana. Proceedings. ECRO XI: 135.

Laurent, G. (1996). Dynamical Representation of Odors by Oscillating and Evolving Neural
Assemblies. TINS, 19 (11), 489-496.

Li, Z., & Hopfield, J.J. (1989). Modeling the olfactory bulb and its neural oscillatory processing. Biol.
Cybern., 61, 349-361.

Linster, C., & Masson, C. (1996). A neural model of olfactory sensory memory in the honeybee's
antennal lobe. Neural Comp., 8, 94-114.

Linster, C.& Gervais, R. (1996). Investigation of the role of interneurons and their modulation by
centrifugal fibers in a neural model of the olfactory bulb. J. Comput. Neurosci., 3, 225-246.

Linster, C., Marsan, D., Kerszberg, M., & Masson, C. (1994).  Odor processing in the bee : a
preliminary study of the role of central input to the antennal lobe, In Cowan, J.D., Tesauro, G. and
Alspector, J. (eds).  Advances in Neural Information Processing Systems 6 (pp. 527-534). Morgan
Kaufman Publishers.

Linster, C., & Hasselmö, M. (1997). Modulation of inhibition in a model of olfactory bulb reduces
overlap in the neural representation of olfactory stimuli. Beh. Brain. Res., 84, 117-127.

Linster, C., & Smith, B.H. (1997). A computational model of the response of honeybee antennal lobe
circuitry to odor mixtures; overshadowing, blocking and unblocking can arise from lateral
inhibition. Behav. Brain Research, 87, 1-14.

Malaka, R. (1995) Dynamical odor coding in a model of the antennal lobe. In Proceedings of the
International Conference on Artificial Neural Networks (ICANN`95), 2, 503-508.

Malun, D.(1991a). Inventory and distribution of synapses of identified uniglomerular projection neurons
in the antennal lobe of Periplaneta americana. J. Comp. Neurol., 305, 348-360.

Malun, D. (1991B). Synaptic relationships between GABA-immunoreactive projection neurons in the
antennal lobe of Periplaneta americana: a double labeling electron microscopic study.
Histochemistry, 96, 197-207.

Masson, C., & Mustaparta, H. (1990). Chemical information processing in the olfactory system of
insects. Phys. Rev., 70, (1), 199-245.

Masson, C., & Linster, C. (1996). Towards a cognitive understanding of odor discrimination: Combining
experimental and theoretical approaches. Behav. processes, 35, 63-82.

Masson, C., Pham-Delegue, M. H., Fonta, C., Gascuel, J., Arnold, G., Nicolas, G., & Kerszberg, M.
(1993). Recent Advances in the Concept of Adaptation to Odours in the Honeybee, Apis mellifera
L. Apidologie, 24, (3), 169-194.

Masson, C., Danty, E., & Linster, C. (1995). Bases cellulaires et moléculaires de la discrimination des
odeurs à signification biologique. Bull. Soc. Zool. Fr, 3, 231-244.

Menzel, R., Hammer, M., Braun, G., Mauelshagen, J., & Sugawa, M. (1991). Neurobiology of Learning
and Memory in Honeybees. In L. J. Goodman and R. C. Fisher (eds). Behavior and physiology of
bees. CAB Int.

Nicolas, G., Arnold, G., Patte, F.& Masson, C. (1993). Distribution régionale de l'incorporation de 2DG
dans le lobe antennaire de l'ouvrière d'abeille. C.R. Acad. Sci. [III].

Peretto, P. (1992). An Introduction to the Modeling of Neural Networks. Cambridge.
Pham-Delègue, M. H., Etiévant, P., Guichard, E., & Masson, C. (1990). Chemicals in bee-plant

relationships. J. Chem.Ecol., 16, 3053-3085.



20

Pham-Delègue, M. H., Masson, C., & Etievant, P. (1991). Allochemicals Mediating Foraging Behaviour
: the Bee-sunflower Model. In L. J. Goodman and R. C. Fisher (eds). Behaviour and physiology of
bees. CAB Int.

Pham-Delègue, M. H., Bailez, O., Blight, M., Masson, C., Picard-Nizou, A. L., & Wadhams, L. J.
(1993). Behavioural Discrimination of Oilseed rape Volatiles by the Honeybee. Chem. Senses, 18,
(5), 483-494.

Prestwich,  G.D. (1993). Chemical studies of pheromone receptors in insects. Arch. Insect Biochem.
Physiol., 22, 75-86.

Quenet, B., Lutz, A., Dreyfus, G., Cerny, V., Masson, C. (1997). A dynamic model of key-feature
extraction: the example of olfaction. I Presentation of the ingredients and properties of the model.
submitted

Quenet, B., Cerny, V., Dreyfus, G., & Lutz, A., (1997). A dynamic model of key-feature extraction: the
example of olfaction. II Theoretical analysis of the model by a Boltzmann-type distribution of
attractors. submitted.

Ressler, K.J., Sullivan, S.L., & Buck, L.B. (1994). Information coding in the olfactory system: Evidence
for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 79, 1245-1255.

Rospars, J.P., & Fort, J.C., (1994). Coding of odor quality: Role of convergence and inhibition. Network:
Comp. Neural. Systems, 5,121-145.

Royet, J.P., Sicard, G., Souchier, C., & Jourdan, F. (1987). Specificity of spatial patterns of glomerular
activation in the mouse olfactory bulb: computer assisted image analysis of 2-DG autoradiograms.
Brain. Res. 417, 1-11.

Schild, D. (1988). Principles of odor coding and a neural network for odor discrimination. Biophys.J.,
54, 1001-1011.

Seneta, E. (1981). Non-negative Matrices and Markov Chains. Springer.
Shepherd, G. (1991). Computational Structure of the Olfactory System. In  Davis J. & Eichenbaum H.

(eds), Olfaction : A model System for Computational Neuroscience. MIT Press.
Shipley, M. T., & Constanzo, R. (1984). Olfactory bulb cytochrome oxydase (CO) staining patterns

suggest that glomeruli are functional units . Soc. Neurosci. Abstr., 10, 118.
Sklar, B. (1988). Digital communication, fundamentals and applications. Prentice-Hall International,

London.
Sklart, P.B., Anholt, R.R.H.& Snyder, S.H. (1989). The odorant sensitive adenalyte cyclase of olfactory

cells.J. Biol. Chem., 261 (33), 15538-43.
Sun, X. J., Fonta, C., & Masson, C. (1993). Odour Quality Processing by Bee Antennal Lobe

Interneurones. Chem. Senses, 18, (4), 355-377.
Vareschi, E. (1971). Duftunterscheidung bei der Honigbiene Einzelzell-Ableitung und

Verhaltungreaktion. Z. Vergl. Physiol., 75, 143-173.
Vassar, J., Chao, S.K., Sitcheran R., Nunez, J. M., Vosshall, L.B., & Axel, R. (1994). Topographic

organization of sensory projections to the olfactory bulb. Cell, 79, 981-991.


