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Formal modeling with multistate neurones and
multidimensional synapses
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Abstract

Multistate neurones, a generalization of the popular McCulloch–Pitts binary neurones, are described; they are intended to
model the fact that neurones may be in several different states of activity, while McCulloch–Pitts neurones model two states
only: active or inactive. We show that as a consequence, multidimensional synapses are necessary to describe the dynamics
of the model. As an illustration, we show how to derive the parameters of formal multistate neurones and their associated
multidimensional synapses from simulations involving Hodgkin–Huxley neurones. Our approach opens the way to solve in a
more biologically plausible way, two problems that were addressed previously: (1) the resolution of ‘inverse problems’, i.e. the
construction of formal networks, whose dynamics follows a pre-defined spatio-temporal binary sequence, (2) the generation
of spatio-temporal patterns that reproduce exactly the ‘code’ extracted from experimental recordings (olfactory codes at the
glomerular level).
© 2004 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

The present study is a step in the modeling of the re-
ations between the anatomical and biophysicalstruc-
ureof biological neural networks and their signal pro-
essing and encodingfunction. More precisely, we sug-
est a new tool that may bring a contribution to the fol-

owing general question: what can we infer about the
onnectivity of a neural network just by looking at the
euronal activity? Answering that question quantita-
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tively amounts to solving an “inverse problem”, wh
was addressed before (Quenet et al., 2000, 2002) by
making the drastic assumption that neurones can
only two states of activity, hence can be modele
binary elements.

In a first step, that simplification allowed the com
tation of the appropriate synaptic weights such tha
resulting neural network exhibited precisely the spa
temporal experimentally recorded code1 (Quenet et al
2000). In a second step, a network of Hodgkin–Hux

1 By “spatio-temporal pattern”, we mean the activity of a
of neurones during a period of time. Such an activity can
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(HH) spiking neurones having the connectivity derived
in the first step was simulated; it was shown that if (i)
an appropriate synchronization mechanism is imple-
mented, and if (ii) synaptic efficacies and delays are
appropriately defined, then the network of HH neu-
rones exhibitsexactlythe same spatio-temporal activ-
ities as the network of McCulloch–Pitts (McCulloch
and Pitts, 1943) (McCP) neurones defined in the pre-
vious step. This proves that theanalytic construction
of networks of McCP neurones can serve as a guide
to more biologically relevant models, since HH neu-
rones can mimic, sometimes with a wealth of de-
tails (Mainen and Sejnowski, 1996; Santamaria et al.,
2002), the features and the activities of single biological
neurones.

Therefore, it can be conjectured that in order to make
progress in the direction of solving inverse problems
with bio-inspired models, it would be useful to design
models of neurones that like binary neurones, have an-
alytically tractable dynamics, but unlike McCP neu-
rones, can model more complexity. In the present paper,
we show how to extend McCP neurones to multistate
units with multidimensional synapses, which (i) can
take into account the fact that a neurone can have sev-
eral states of activity (e.g. can generate, zero, one or two
spikes in a given time interval, depending on the state
of its presynaptic neurones), and that (ii) can take into
account several types of synapses (e.g. involving differ-
ent neurotransmitters, or with different locations on the
dendritic tree) as well as multiple contacts between two
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2. Direct and inverse problems in a network of
binary units

In the present section, we recall briefly the notations
that are used in the analysis of binary (McCP) neurones,
and we outline the resolution of inverse problems with
such model neurones.

2.1. The dynamic neural filter: a network of
McCulloch and Pitts binary units

In its deterministic version, a dynamic neural fil-
ter (Quenet and Horn, 2003; Quenet et al., 2000) is a
network of binary units with exogeneous inputs and ar-
bitrary connectivity, whose dynamics is defined in dis-
crete time. Let us consider a network ofNMcCP units,
where the activitysi(t) of each uniti, i ∈ {1,. . .,N}; at
discrete timet can be either 0 or 1. The general term of
the synaptic matrixW of the network iswij ∈ N, that
term corresponds to the weight of a single synaptic
contact from neuronej to neuronei. We consider here
a model, in which each neurone receives an external
inputRi ∈ N, the vector�R defined by theNcoordinates
Ri is the input vector to the network. The dynamics of
the network is defined by:

hi(t) = Ri +
N∑
j=1

wijsj (t − 1) (1)

hi(t) is the potential of neuronei at discrete timet and
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eurones.
Finally, we show how to derive the states of

ultistate neurones, and the elements of the m
imensional synapses, from simulations of HH n
ones. It constitutes also a step to bring together
odels of a neurone, a biologically plausible o

he HH neurone and an analytically tractable o
he McCP-like neurone, using an example of the
er in order to define, in an ad hoc manner,

atter.

xperimentally recorded or computed, for biological or for
eurons, respectively. If time bins can be defined, the nu
f spikes emitted in each time bin by the recorded neur
ay be used to define a “spatio-temporal code” (see, fo

tance,Wehrt et Laurent, 1994) that can be reproduced with d
rete time formal neurones,provided the resolution of an inver
roblem.
j(t− 1) the state of neuronej at timet− 1, which take
ts value in{0,1}.

i(t)H

(
hi(t) − 1

2

)

ith H(x) =
{

1 if x > 0

0 otherwise
(2)

uch a network exhibits a discrete-time dynam
hose major property is to respond to any stable i

� with a spatio-temporal activity pattern: a seque
f 0 and 1 for each neurone. Given an initial stat

he network, the binary spatio-temporal patterns ev
owards a fixed point or toward a cycle whose leng2

2 This length may become very large at the edge of chaos
ome conditions onW and �R (Gutfreund et al., 1988; Kliper et a
003, in press).
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depends on the values ofWand�R. Ranking the neurone
activities in a row for each time step, a spatio-temporal
pattern of lengthT can be denoted a [(T+ 1)×N] ma-
trix P, whose general termPti is the activitysi(t) of
neuronei at timet: the first row ofP is the initial state
of the network, i.e. at timet= 0, row (t+ 1) of P is the
state of the network at timet, and the columni is the
sequence of activity of neuronei.

2.2. Direct and inverse problems

The direct problem can be defined as follows: given
W and �R, what is the spatio-temporal behaviour of
the network, i.e. what pattern, or code, does it ex-
hibit as a response to the input�R? The coding prop-
erties of the DNF are described in (Quenet and Horn,
2003); it is shown that they are robust to synaptic
noise.

Given a matrixPof a spatio-temporal pattern, an in-
verse problem consists in findingWand�R such that the
network exhibits the activity described by matrixP.3

The conditions on the termswij andRi can be written
asNsets ofT inequalities, one set per neurone; such an
inequality is given for time discretet and neuronei in
Eq.(3).

(2Pti − 1)


 N∑

j=1

wijP(t−1)j + Ri


 > 0 (3)

3
m

eu-
r s an
e fined
a dif-
f ing
t ows
a near
i

by a
s ard

n re-
s 2,
2

extension consists in encoding the state of the neurone
by a scalar that can take onK different values. Such
an approach, however, cannot be valid since the three
states are not topologically equivalent. In that repre-
sentation, stateK is separated from stateK+ 2 by state
K+ 1.

The standard way of achieving complete topolog-
ical equivalence of the states of a multi-state system
consists in using a one-out-of-K encoding; each state
of the system is represented inK-dimensional space as
a vector belonging to a basis of that space. Complete
topological and metric equivalence between the states
is achieved if the basis is orthonormal: statek of the
system is described as a vector, whosekth component
is equal to 1, all other components being equal to 0.

Equivalently, the state can be represented by a vector
in K− 1 dimensional space where the possible states
are described byK vectors, provided thatK− 1 vectors
provide a complete basis ofK− 1 dimensional space.
The relation between the above representations is de-
scribed in Appendix 1.

As an example, the state of a three-state neurone
can be represented as one vector out of three vec-
tors �A, �B, �C in two-dimensional space, if two vec-
tors among the three possible vectors are not collinear.
Topological and metric equivalence of the states is
achieved if the three vectors�A, �B, �C have the same
length and are at 120◦ angular separation (Fig. 1). That
is identical to a three-state Potts neurone (Kanter, 1988;
Wu, 1982), but with synapses defined in a very different
w
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. Multidimensional synapses in a formal
ultistate neural network

In the present section, a network of multistate n
ones with multidimensional synapses is defined a
xtension of the model neurones and synapses de
bove. The purpose of that extension is to model

erent states of activity of a neurone, while retain
he topological equivalence of the states, which all
ddressing an inverse problem by solving sets of li

nequalities.
Since the state of a McCP neurone is defined

calar that can take on two values; a straightforw

3 The inverse problem was solved for several P-patterns i
ponse to several inputs to a given network (Quenet et al., 200
000).
ay.4

In that framework, the potential of formal neuro
is a vector inK− 1 dimensional state, which is o

ained by alinear transformationof the vector state
f all presynaptic neurones: hence information tran
etween each pair of neurones{i, j} is described by
K− 1,K− 1)matrix Wij .

In the case of a three-state neurone, the potent
he neurone is defined by

�
i(t) =

N∑
j=1

Wij(�Sj(t − 1)) + �Ri (4)

4 Another three-state neuron has been described by Silve
haw and Pearson (Silverman et al., 1986), where these three sta
re ranked on a one-dimensional space. In this model, the syn
re scalar.
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Fig. 1. (a) A single dimension is sufficient to represent two independent states of a binary unit; they can be seen as a dumb-bell with one state at
each extremity. They are perfectly symmetric with respect to their centre of gravity. The membrane potentialh is a one-dimensional object. (b)
A two-dimensional space is necessary to represent three states without any order relationship between them; the potential�h is a bidimensional
object.

�hi(t) is the potential of neuronei at discrete timet and
�Sj(t − 1) the state of neuronej at time (t− 1), which
takes its value in{ �A, �B, �C}.

In the deterministic case, the state�Si(t) of neurone
i at timet is the state among{ �A, �B, �C} that is closest
to �hi(t), since|| �A|| = || �B|| = || �C||:
�si(t) = �A ⇔ �hi(t) �A > �hi(t)�B and�h(t) �A > �h(t)�C (5)

Similar conditions hold for�B and �C.
Given a [(T+ 1)×N] matrix P of a spatio-temporal

ternary pattern, solving an inverse problem consists

in finding a tensorW (of size 2× 2×N×N and gen-
eral termwab

ij ) and a matrixR (of size 2×N and gen-
eral term) such that the network exhibits the spatio-
temporal pattern defined by matrixP. The conditions
on the termswab

ij andRa
i can be written asN sets of

2T inequalities, one set per neurone; a couple of in-
equalities can be written for timet and neuronei. In
order to write these inequalities, it is necessary to as-
sign to �h some components in the two-dimensional
space, for instance,�h = h1�B + h2 �C. Since �A · �B =
�B · �C + �A · �C = 1

2|| �A||2 and �h is defined by Eq.(4),
the conditions are given in Eq. (6).

If �Pti = �A




N∑
j=1

[
w11

ij P
1
(t−1)j + w12

ij P
2
(t−1)j

]
+ R1

i < 0

N∑
j=1

[
w21

ij P
1
(t−1)j + w22

ij P
2
(t−1)j

]
+ R2

i < 0

if �Pti = �B




N∑
j=1

[
w11

ij P
1
(t−1)j + w12

ij P
2
(t−1)j

]
+ R1

i > 0

N∑
j=1

[
(w11

ij − w21
ij )P1

(t−1)j + (w12
ij − w22

ij )P2
(t−1)j

]
+ (R1

i − R2
i ) > 0

if �Pti = �C




N∑
j=1

[
(w21

ij − w11
ij )P1

(t−1)j + (w22
ij − w12

ij )P2
(t−1)j

]
+ (R2

i − R1
i ) > 0

N∑ [
21 1 w22

ij P
2

]
2

(6)

j=1

wij P(t−1)j +
 (t−1)j + Ri > 0
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4. Modeling a Hodgkin–Huxley neurone as a
multistate neurone with multidimensional
synapses

Let us suppose that we want to reproduce neuronal
recordings that can be considered as a sequence of syn-
chronised three-state data. Applying the same strat-
egy as described for binary data, we take advantage
of the possibility of solving the inverse problem for a
McCP-like three-state neural network in order to de-
fine synaptic connections and inputs. Nevertheless, the
three neuronal states identified in some experimental
recordings are not necessarily in asymmetric config-
uration. It means that we need first to define appro-
priate McCP-like neurones before solving the inverse
problem for a network of such neurones. A HH model
of neurone exhibiting three types of activities may be
helpful. Indeed, it is possible to perform numerical
experiments on such a model, i.e. simulations with
the software NEURON, in order to build an ad hoc
three state McCP-like unit, where not only thestates
must be defined and their components assigned, but
also the potential→ hi and the two functionsf1 and
f2 that describe respectively thepotential-statesrela-
tion (�h= f1(states), as in Eq.(4) and thestate-potential
relation (�s= f2(potential), as in Eq. (5). We will de-
scribe how the three state McCP-like units can be de-
rived from numerical experiments performed on HH
neurones.

4
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Fig. 2. The Hodgkin–Huxley formal neurone is made of two com-
partments: a somatic compartment and a dendritic one, which re-
ceives an inhibitory synapse and an excitatory one located in the
middle of the dendrite. A table with the values of the geometrical
and biophysical parameters is given in Appendix 2.

4.2. The synapses, delays and temporal
behaviours

The temporal evolution of the synaptic conduc-
tances are modeled byalpha functionswith differ-
ent time constants for the inhibitory synapse and for
the excitatory one. The activity of such a unit is sim-
ulated with the software NEURON; the parameters
of the neuronal model are such that a typical be-
haviour of the model is indicated inFig. 3 where
three types of activity appear: no spike, one spike
and two spikes. It is thus possible to define the three
statesA, B andC that encode the generation of zero,

Fig. 3. As a response to a regular couple of external stimuli applied
with varying amplitudes to both the excitatory and the inhibitory
synapses, the typical temporal behaviour of the HH neurone de-
scribed inFig. 2exhibits three different patterns of activity that can
be considered asthree different states; we assign stateA to the state
were the neurone emits no spike as a response to a stimulus, stateB
to the emission of a simple spike, andC to the emission of a double
spike. The definition of the states relies on a sampling of the contin-
uous time into bins: the activity of the HH neurone in each time bin
c e time
s

.1. The Hodgkin–Huxley model

The HH model considered here is made of two c
artments: a soma and a dendrite where an inhib
ynapse and an excitatory synapse are located;
ram of this neurone is represented inFig. 2. Using the
EURON software, this simple model was construc
ith a minimal number of ionic currents. The nonlin
ature of calcium dynamics enable cells to genera
ide repertoire of spatio-temporal patterns; theref

n addition to the somatic sodium and potassium
ents, a low-threshold calcium current (T-current) and
he mechanism for decay of internal calcium concen
ion due to calcium currents and pump were introdu
n the somatic and dendritic membrane in order to
ilitate the generation of double spikes (Destexhe et al
998).
orresponds to the state of a McCP-like neurone updated at on
tep.
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Fig. 4. Alpha functions describing the temporal evolution of in-
hibitory and excitatory synaptic conductances. The corresponding
equation is (g=gmax (t/τ) exp(1−t/τ)) with τ = τIN andτEX, respec-
tively. The stimuli applied to the neurone are delayed in such a way
that the conductances reach their maxima simultaneously. The time
course of the synaptic conductances is smaller than the time bin
mentioned inFig. 3.

one or two spikes in a given time bin.5 Such ac-
tivities are responses to short pulses (Dirac) applied
to each synapse with adapted delays such that the
peaks of the synaptic conductances occur simultane-
ously as indicated inFig. 4; they depend on the val-
ues of the two activity-dependent quantitiesgIN

max, and
gEX

max.
We define the ‘potential’ �h as the two-dimensional

vector whose components arethe maximal synaptic
conductances:

�h =
(

gIN
max

gEX
max

)

4.3. Numerical experiments

Having defined the states and the potential, we
show how simulations performed with the HH neu-

5 The formalism introduced here to describe a three-state neurone
can be extended to other behaviours than the triplet “no spike, one
spike, two spikes”: for instance, it is possible to introduce a bursting
state as one of such states. Our approach is useful to define the dy-
namics of a neural network with multistate neuronesif these states
can be defined within short fixed time bins, which is not the case for
more complex neuronal behaviours like poissonian firing or oscilla-
tory firing for instance. Such long-term behaviours mayemergeas
temporal patterns exhibited by some neurones in a multistate neural
networks.

rone can be used in order to define the dependence
of the potential of a McCP-like neurone on the state
of activity of the network (f1) and the dependence
of the state of this neurone on its potential (f2).
Since functionf2 is easier to construct, we describe
it first.

4.3.1. Construction of the state of the neurone
from its potential (function f2)

The function we are looking for should assign
to any, i.e. to any couple of values (gIN

max, gEX
max), a

state of the neurone, i.e. an activity as a response to
the presynaptic stimulus: no spike, one spike or two
spikes. The following numerical experiment was per-
formed: the number of spikes generated by the neu-
rone shown onFig. 2 was recorded in response to
the simultaneously stimulation of both its excitatory
and its inhibitory synapses (Fig. 5), as a function of
the potential (gIN

max, g
EX
max); the results are displayed on

Table 1.
The number of spikes observed in the simulations

defines sub-regions of this potential space, clearly sep-
arated by linear boundaries, whose equations are of the
typegEX

max = mgIN
max + θ.

F s per-
f
c pses
b odify
t he
s at
t
o

ig. 5. Schematic representation of the numerical experiment
ormed with the HH neurone ofFig. 3 in order to definef2. By in-
rementing the weights of the inhibitory and the excitatory syna
etween a stimulating element (Stim) and the neurone, we m

he conductancesgIN
max andgEX

max and we measure the effect of t
imultaneous input of both excitation and inhibition by looking
he somatic response which is no spike (stateA), one spike (stateB)
r a double spike (stateC). The results are given inTable 1.
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Table 1
Table of the state-potential relation for the HH neural model ofFig. 2

0 0.0032 0.0064 0.0096 0.0128 0.016 0.0192 0.0224 0.0256 0.0288 0.032 0.0352 0.0384 0.0416 0.0448 0.048 0.0512 0.0544

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0018 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0036 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0054 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0072 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.009 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0108 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0.0126 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0.0144 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0.0162 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0.018 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0.0198 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0.0216 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0.0234 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0.0252 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0.027 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0.0288 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0
0.0306 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0
0.0324 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.0342 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.036 2 2- 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.0378 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.0396 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
0.0414 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

On the horizontal axis, the value of the inhibitory maximal conductancegIN
max is increased from 0 to 0.0644�S by steps of 0.0032, while on the

vertical axis,gEX
max is increased from zero to 0.0414�S, by steps of 0.0018 (a fixed excitatory additional input is applied to the neurone, which

corresponds to a maximal conductance of 0.0114�S). We observe here that the regions defined by the states of the neurone are separated by
linear boundaries.

In the present case,f2 can be expressed in the fol-
lowing way (Eq. (7)), withh1 = gIN

max andh2 = gIN
max:

6

If h2 − mABh
1 − θAB < 0 s = A (no spike)

If h2 − mABh
1 − θAB > 0 and

h2 − mBCh
1 − θBC < 0 s = B (1 spike)

If h2 − mBCh
1 − θBC > 0 s = C (2 spikes)

(7)

The parameters of the boundary between re-
gions of data A and B are estimated to be
mAB= 0.56 andθAB= 0.0132�S; similarly,mBC= 1.02
andθBC= 0.0274�S.

4.3.2. Construction of the potential of the neurone
from the state of activity of the network (f1)

The function we are looking for should assign to
each statesj of neuronej, presynaptic to neuronei, a

6 Providedh1 andh2 are in the range of values defined by the
numerical experiments.

value of

�hij =
(

gIN
ij max

gEX
ij max

)
,

due to the contribution of neuronej to the potential of
neuronei. According to Eq.(4), such a contribution can
be written as indicated in Eq. (8).7

�hij =
(

gIN
ij max

gEX
ij max

)
= Wij�sj

(
w11

ij w12
ij

w21
ij w22

ij

)(
xsj

ysj

)

=
(

w11
ij x

s
j + w12

ij y
s
j

w21
ij x

s
j + w22

ij y
s
j

)
(8)

7 Time is not included in this equation, as we look for a relation-
ship, which is time-independent. Nevertheless, when this potential-
state relation is a part of the updating rules, time appears in the states,
as in Eq.(4).
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where the components

(
xsj

ysj

)
of state sj , are(

xAj

yAj

)
,

(
xBj

yBj

)
or

(
xCj

yCj

)
. Since synaptic conduc-

tances add, we can consider that the potential�ht at the
level of neuronei is the sum of the contributions of all
presynaptic neuronesj, and of an external stimulus�Ri:

�hi =
N∑
j=1

�hij + �Ri. (9)

Let us assume that neuronej hastwo types of synap-
tic contacts on neuronei8: one inhibitory synapse with
weightGIN

ij and one excitatory synapse withweight

GEX
ij , where these weights are the maximal conduc-

tance of the synpases when they are activated by a sin-
gle presynaptic spike. We are looking for a relation
between the elements of the formal multidimensional
synapseWij and the weightsGIN

ij andGEX
ij . Such a rela-

tion depends on the values of the components assigned
to statesA, B andC; the latter are still to be defined.
In other words, if we want to derive the contribution
of neuronej to the potential of neuronei in Eq. (9),
we need to estimate the values of 10unknown quan-
tities: the 3× 2 components of the states and the four
components of the multidimensional synapse. They can
be estimated from numerical experiments as follows: a
stimulus that mimics9 a presynaptic stateA,BorC, can
b oten-
t be
c

w
o ,

lism
i tacts
b ., ex-
c m to
s
a

aptic
s ar as
t such
s nts,
w

Eq. (8) becomes Eq. (10)10

(
gIN

max(0)

gEX
max(0)

)
=
(

w11xA + w12yA

w21xA + w22yA

)
=
(

0

0

)

∀w11, w12, w21, w22 (10)

Eq. (12) is trivially verified if we choose the compo-
nents of stateA to be zero:(

xA

yA

)
=
(

0

0

)
.

When the stimulating element emitsone spike(state
B), by definition,for each value of GIN (respectively
GEX) the value ofgIN

max(1) isGIN (respectivelygEX
max(1)

isGEX). In this case, Eq. (10) becomes Eq. (11)(
gIN

max(1)

gEX
max(1)

)
=
(

w11xB + w12yB

w21xB + w22yB

)
=
(

GIN

GEX

)
(11)

If we assign arbitrarily to stateB, the following com-
ponents:(

xB

yB

)
=
(

0

0

)

Eq. (11) becomes:(
w11

) (
GIN

)

W di-
m n
q

(
v -
u dis-
p -
t
w

ns,
a e
f rone
i

e generated, and its effect on the values of the p
ial (gIN

max, g
EX
max) of a postsynaptic HH neurone can

omputed for different values ofGIN andGEX (Fig. 6).
When the stimulating element issilent (stateA),
hatever the value of GIN (respectivelyGEX) the value
f gIN

max(0) is 0 (respectivelygEX
max(0) is 0). In this case

8 Although this assumption may seem unorthodox, the forma
ntroduced here can include the case of multiple synaptic con
etween two neurones, which may be of opposite signs (i.e
itatory and inhibitory). Some recent experimental results see
upport the existence of such complex neuronal interactions (Chavas
nd Marty (2003).

9 It is also possible to perform simulations where the presyn
timulus comes from another HH neurone, however, in so f
he interspike interval of state C is the same, the results of
imulations are similar to those obtained with the “Stim” eleme
hich mimics such a presynaptic neurone.
w21 =
GEX (12)

e still have two unknown quantities for the multi
ensional synapseW: w12 andw22, and two unknow
uantities for the components of stateC.

When the stimulating element emitstwo spikes
stateC), we measure the values ofgIN

max(2) for some
alues ofGIN and the values ofgEX

max(2) for some val
es ofGEX. The results of these experiments are
layed onFig. 7, which shows thatgIN

max(2) (respec
ively gEX

max(2)) is a linear function ofGIN (resp. ofGEX)
ith a slopeαIN = 1.98 (resp.αEX = 1.58).

10 The subscriptsi and j have been dropped from the equatio
s i represents the HH neurone andj the stimulating element. Th

ormal multidimensional synapse from this element to the neu
s W.
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Fig. 6. Schematic representation of the numerical experiments performed on HH neurones in order to definef1. By changing the state of the
Stim element (0, 1 or 2 spikes) and the weights of the inhibitory and the excitatory synapses between it and the neurone, we measure the effects
of these changes at the level of the maximal conductancesgIN

max(0,1 or 2) andgEX
max(0, 1 or 2) (0 not shown). These experiments are performed

on the inhibitory synapse (a) and on the excitatory synapse (b) independently.

Fig. 7. When the Stim element generates a double spike, the value ofgIN
max varies linearly with the value ofGIN (a) (idem forgEX

max andGEX).
The slope isαIN=1.98 for the inhibitory synapse andαEX = 1.58 for the excitatory one. (The unit of thex- andy-axes is�S; the scales forGIN

andGEX are those ofTable 1).

In this case, Eq. (8) becomes Eq. (13)11

(
gIN

max(2)

gEX
max(2)

)
=
(

GINxC + w12yC

GEXxC + w23yC

)
=
(

αINGIN

αEXGEX

)

∀GIN,GEX (13)

We have four unknown values for two equations, so
that we canchoose two of themarbitrarily. Once again,

let us choose the components of stateC as:

(
xC

yC

)
=(

0

1

)
. Then Eq. (13) becomes Eq. (14):

(
gIN

max(2)

gEX
max(2)

)
=
(

w12

w22

)
=
(

αINGIN

αEXGEX

)
(14)

11 ProvidedGIN andGEX are taken in appropriate intervals (Table
1).

From those numerical experiments, the potential of the
neurone can be written down explicitly as a functionf1
of the state of activity of the network:

�hi =
(

h1
i

h2
i

)
=
(

gIN
I max

gEX
I max

)
=

N∑
j=1

wij�sj + �Ri

=
N∑
j=1

(
GIN

ij αINGIN
ij

GEX
ij αEXGEX

ij

) (
xsj

ysj

)
+
(

R1
i

R2
i

)
(15)

with

(
xA

yA

)
=
(

0

0

)
,

(
xB

yB

)
=
(

1

0

)
and

(
xC

yC

)

=
(

0

1

)
. Eq. (15) describesthe relation between the

formal multidimensional synapse Wij and the synaptic
weightsof the inhibitory and excitatory connections,
given the formal definition of statesA, B andC.
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5. Generalisation of multidimensional synapses
to multisynaptic contacts

The above analysis can be generalized in two re-
spects: one can consider that the neurone exhibitsK
different states, and that there areL synaptic contact
typesbetween two neurones.12 Wedefinethe potential
�h, as being a vector whose length isL, with each of
its components corresponding to the maximal conduc-
tance of a synaptic type.

Numerical experiments with such a neurone allow,
in principle,13 a mapping of theK states of the post-
synaptic neurone as a function of theL values of the
maximal synaptic conductances. If the boundaries be-
tween regions are linear, i.e. hyperplanes of maximal
dimensionsL− 1, functionf2 is simply defined by in-
equalities as in Eq. (7).

Let us assign to theK states,E0, E1. . ., EK−1, the
following components in aK− 1-dimensional space:
the mth component of stateEk is ekm = δmk, where
δmk is the Kronecker symbol andm∈ {1, . . . K −
1}, k ∈ {0, . . . K − 1}, which means that all the com-
ponents ofE0 are zero (silent state), and the only non-
zero component ofEk is ekk = 1. In such a case,Wij is a
L× (K− 1) multidimensional synapse whose general
term is given in Eq. (16)

wkl
ij = αl

kG
l
ij k ∈ {1, . . . , K − 1}, l∈ {1, . . . , L}

(16)

w
r apse
t
m resy-
n the
w of
t t
w sy-
n

rised
b f
a e
s pe
s

t ximal
s

6. Conclusion

In an effort towards more insightful mathematical
modeling of neurones and networks, discrete-time mul-
tistate formal neurones and multidimensional synapses
have been defined. The purpose of that approach is to
gain biological plausibility while retaining the mathe-
matical simplicity of McCP neurones; that is especially
useful when attempting to solve inverse problems, i.e.
to infer quantitative hypotheses on the network and its
structure from the observation of the activity of a frac-
tion of its neurones.

The multiple states of a neurone can be defined in
many different ways: in the present paper, we consid-
ered three-state neurones, whose states were “silent”,
“one spike per time bin” and “two spikes per time bin”.
Other state definitions can be investigated.

In that framework, the potential of aK-state neu-
rone is a vector in (K− 1)-dimensional space, which
is obtained as a linear transformation, defined by the
multidimensional synapses, of the state vector of the
neurone; therefore, a synapse between two neurones is
no longer defined by a scalar (its efficacy), but by a ma-
trix (hence the term “multidimensional synapse”). That
makes modeling very flexible; for instance, the exis-
tence of multiple synapses between two given neurones
can be taken into account in a model: different types
of neurotransmitter, different effects (excitatory or in-
hibitory) and different locations in the dendritic tree.

As an illustration, we have shown how states and
p im-
u de-
fi pro-
v ble.
W once
t in the
p vec-
t , the
r way
t the
f lly
t

A

be
r

hereαl
1 = 1∀l, andαl

k = k ∈ {2, . . . , K − 1} is the
atio of the maximal conductance measured at syn
ypel when the presynaptic neurone is in statekand the
aximal conductance of that synapse when the p
aptic neurone is in state 1 (which is, by definition,
eight of the synapse). In other words, each term

heWij multidimensional synapse is asynaptic weigh,
eighted itself by the influence of the state of the pre
aptic neurone on this synapse.

12 By a “synaptic contact type”, we mean a synapse characte
y itseffect(excitatory or inhibitory), itsdynamics(time constant o
n alpha function for instance) andits location with respect to th
oma of the post-synaptic neurone. Several contacts of the same ty
imply sum up their weights.
13 At least, it is possible theoretically, and practically, ifL is not

oo large to get a map of the states as a function of the ma
ynaptic conductances.
otentials can be defined in that framework, from s
lations of “realistic” (HH) neurones; they can be
ned similarly from experimental measurements,
ided the values of the relevant quantities are availa
e have shown how the potential can be derived

he states are defined: in the example addressed
resent paper, the formal potential is defined as the

or of the maximum synaptic conductances. Thus
esults reported here can be expected to open the
o more biologically plausible approaches, within
ramework of discrete-time modeling with analytica
ractable model neurones.

ppendix A

We show that the state of aK-state neurone can
epresented as one amongK vectors inK− 1 dimen-
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sional space is equivalent to a one-out-of-K represen-
tation inK-dimensional space.

Consider aK-state system described by one vector
out ofK linearly independent vectorsX1, X2, . . ., XK.
In K-dimensional affine space, the equation of a hyper-
plane can be written as:

nX + 1 = 0,

wheren is a vector normal to the hyperplane.
If the end points of vectorsX1, X2, . . ., XK, belong

to that hyperplane, then the following set ofK linear
equations hold:

nX1 = n · X2 = · · · = nXk = −1

The solution of that set of equations, i.e. theK com-
ponents of vectorn, exists since vectorsXi are as-
sumed to be linearly independent. The orthogonal pro-
jection ofYi of Xi onto the hyperplane is given by:Yi =
Xi − Xin‖n ‖

n
‖n ‖ = Xi + n

‖n ‖2 .

Example1. The state of a two-state system can be rep-
resented in two-dimensional state by one of the vectors:

X1 =
(

1

0

)
and

(
0

1

)

T

n

S of
t pace
a a
M

E n be
r f the
v

X

Then

n =




−1

−1

−1


 ,Y 1 =




2/3

−1/3

−1/3


 ,

Y 2 =




−1/3

2/3

−1/3


 and Y 3 =




−1/3

−1/3

2/3


 .

The three vectors have the same module and sum to
zero, hence define a two-dimensional subspace and
have angular separations of 2�/3 radians.

Appendix B

Hodgkin–Huxley neurones constructed with NEU-
RON

Geometry

Soma Diameter 30�m

Length 30�m

Surface area 2826�m2

Dendrite Diameter 2�m

Length 100�m

B

e

hen

=
(

−1

−1

)
,Y 1=

(
1/2

−1/2

)
and Y 2=

(
−1/2

+1/2

)

inceY1 andY2 are collinear and opposite, the state
he system can represented in one-dimensional s
s one of two scalars, e.g. +1 and−1, as usual in
cCP neurone.

xample 2. The state of a three-state system ca
epresented in three-dimensional space by one o
ectors:

1 =




1

0

0


 ,X2 =




0

1

0


 , and X3 =




0

0

1


 .
Surface area 628�m2

iophysics

Soma Dendrit

Membrane
conductance (pas)
1/Rm (S/cm2)

0.0003 0.0001

Axial Resistance (Ra)
ohm cm

30 30

Membrane
capacitance Cm
(�F/cm2)

1 1

Resting potential (mV) −59 −70
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Ionic conductances

Na+

Equilibrium potential = 45 (mV)

Maximal conductance (gmax) = 0.34 (uS)

K+

Equilibrium potential =−70 (mV)

Maximal conductance (gmax) = 0.1 (uS)

Ca+

Equilibrium potential = 120 (mV)

Maximal conductance (gmax) = 0.0002 (uS)

T-type (low-threshold) calcium current and intracel-
lular calcium dynamics were used according to mod-
elled mechanisms from NEURON (Destexhe et al.,
1998)

Synpases (alpha function) Excitatory
synapse

Inhibitory
synapses

Equilibrium
Potentiel (e)
(mV)

45 −90

Maximal 0.0055 0.0022
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