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Abstract

Network models of synchronously updated McCulloch�/Pitts neurones exhibit complex spatiotemporal patterns that

are similar to activities of biological neurones in phase with a periodic local field potential, such as those observed

experimentally by Wehr and Laurent (1996, Nature 384, 162�/166) in the locust olfactory pathway. Modelling

biological neural nets with networks of simple formal units makes the dynamics of the model analytically tractable. It is

thus possible to determine the constraints that must be satisfied by its connection matrix in order to make its neurones

exhibit a given sequence of activity (see, for instance, Quenet et al., 2001, Neurocomputing 38�/40, 831�/836). In the

present paper, we address the following question: how can one construct a formal network of Hodgkin�/Huxley (HH)

type neurones that reproduces experimentally observed neuronal codes? A two-step strategy is suggested in the present

paper: first, a simple network of binary units is designed, whose activity reproduces the binary experimental codes;

second, this model is used as a guide to design a network of more realistic formal HH neurones. We show that such a

strategy is indeed fruitful: it allowed us to design a model that reproduces the Wehr�/Laurent olfactory codes, and to

investigate the robustness of these codes to synaptic noise.
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1. Introduction

Many different coding mechanisms are usually

discussed in the literature, including spiking rates,

time coincidence, time ranks, spatial patterns, and

spatiotemporal patterns. In the present study, we

focus on coding by spatiotemporal patterns, which

seems particularly relevant to the olfactory system.

Modelling of coding mechanisms involves models

in a wide complexity range, from simple analyti-

cally tractable networks of binary units, to very

complex networks with higher biological plausi-

bility. It is the purpose of the present methodolo-
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gical paper to endeavour bridging the gap between

these two extremes. As an illustration, we show

how to reproduce exactly binary-type sequences,

observed in the olfactory system, with a model

network of biologically plausible neurones, when a

clock (internal or external) synchronises their

firing activities; the analysis of the synchronisation

mechanism, and of the code readout mechanism,

are beyond the scope of the paper.

We focus on a network of neurones that may be

fully connected if necessary (no prior restriction on

the connectivity is considered). Each neurone

receives an input from a sensory stage (not

modelled here); this input may be either excitatory

or inhibitory. In the simplest model, the neurones

are binary units. The design of this model requires

addressing the following two problems:

. The direct problem, i.e. the mapping from the

(sensory) input space to the (internal represen-

tation) output space. In other words, the direct

problem addresses the question of the dynami-
cal behaviour of the network defined by a given

connection matrix in response to a given input.

When the input is stable in time, this behaviour

takes on the form of a cycle of binary activities.

The elements of the cycle can be computed

analytically in the case of deterministic dy-

namics, and the occurrence probabilities of

these activities can also be computed analyti-
cally in the case of stochastic dynamics. The

analytical treatment thus given provides much

more insight than mere numerical computa-

tions.

. The inverse problem, i.e. the design of the

network given (experimentally observed) binary

codes. In other words, the inverse problem

addresses the question of finding the family of
connection matrices and of inputs that can elicit

a given sequence of binary activities.

Our approach to the design of the model with

higher biological plausibility consists in keeping

the same connection matrix, i.e. the same neural

architecture, and the same input vector, and

investigating whether the complex units can re-

produce exactly the codes generated by the simple

model.

Recently, we constructed such an analytically
tractable model of the antennal lobe neurones

(Quenet et al., 2001), whose parameters were

adjusted in order to make its units fire according

to experimental data recorded on the locust

antennal lobe by Wehr and Laurent (1996).

Wehr and Laurent observed that different odours

are encoded by specific time series, which are

defined in temporal windows provided by an
oscillatory local field potential (LFP). We showed

that the type of behaviour observed experimentally

could be reproduced by a recurrent (fully con-

nected) neuronal model as described above, con-

sisting of binary McCulloch�/Pitts neurones and

updated synchronously.

In the present paper, we suggest a method for

determining the parameters of the network (con-
nection matrix and input vector) in order to

reproduce the exact codes recorded experimen-

tally, and we show how such a model can be used

as a guide to the construction of a more complex

network with Hodgkin�/Huxley type units.

2. Network of binary units

In our model, binary neurone i , (/i � [1; : : :; N])

may either fire, (gi �/1), or be quiescent (gi �/0) in
each time bin. In the experimental illustration

discussed below, each time bin is a period of the

LFP; the N neurones represent both projection

and interneurones in the case of the locust

temporal lobe.

The model may have full connectivity; it has the

following Hopfield�/Little dynamics (Hopfield,

1982; Peretto, 1992):

gi(t�1)�H

�X
f

Wijgj(t)�Ri�ui

�
(1)

where Wij is the general term of the synaptic

connection matrix; the external input Ri , provided

by the sensory stage, is assumed to be constant for

the duration of the experiment; ui is the threshold

of neurone i ; H is the Heaviside step function.
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3. Direct and inverse problems

The direct problem (input�/output mapping) has
been analysed in detail elsewhere (Quenet et al.,

1999; Quenet and Horn, 2002).

In the present study, we focus on the inverse

problem: for a given set of spatiotemporal activity

patterns of n neurones observed for T time steps,

find a synaptic matrix W and a corresponding set

of inputs �R/s that lead to the observed patterns. If

the inverse problem cannot be solved with the set
of observed neurones, the system can be expanded

by allowing for additional, ‘hidden’, neurones

whose activity has not been observed in the course

of the neurophysiological experiments. In that case

we look for a parsimonious model that allows for

the existence of a solution to the inverse problem

(a similar approach, in a different context, has

been developed in Plouraboué et al., 1992).
Given a sequence, from t�/1 to T , the condition

for the network to generate this sequence is:

XN

j�0

Wijgj(t)�0 if gi(t�1)�1;

i � f0; 1; : : :; Ng (2)

XN

j�0

Wijgj(t)B0 if gi(t�1)�0;

i � f0; 1; : : :; Ng (3)

where N is the total number of neurones (observed

and hidden),

Wi0�Ri�ui (4)

and g0�/1, � t: This set of T inequalities for each

neurone can be expressed as in the conventional

linear separability condition of perceptrons:

�W i � �xi;t�0 (5)

where �W i is the vector of the inputs to neurone i

(the i th row of matrix W), and �xi;t is a ternary

vector whose general term, xi;t;j � f�1; 0; 1g is

defined as:

xi;t;j �(2gi(t�1)�1) � gj(t) (6)

Thus the (N , N�/1) matrix W is subject to NT

constraints. The initial assumption is that N�/n ,

i.e. we are only dealing with the observed neu-

rones, whose spatiotemporal activity is known. We

consider that all neurones, except g0, are quiescent

initially: gi (t�/0)�/0, i�/1,. . ., N . We solve the

Fig. 1. Six different spatiotemporal patterns of two Projection Neurones (PN1 and PN2) firing probabilities in the locust antennal

lobe, in response to six odorant inputs (from Wehr and Laurent, 1996). The firing probabilities evolve in phase with an oscillatory LFP,

which defines time bins of synchronous neuronal activity. When the firing probability of a neurone is higher than 0.3 in a time bin, the

authors suggest coding the activity of this neurone as 1 for the corresponding time bin and as 0 otherwise: these binary codes are

indicated for each neurone and each pattern.
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problem by considering each row of matrix W

individually. For each row, the set of constraints

represented by the (T , N�/1) matrix xi can be

viewed as T data points in an N�/1 dimensional
space for which the Perceptron inequality (Eq. (5))

must hold. Thus, finding a solution of the inverse

problem is equivalent to finding the appropriate

weights of the corresponding Perceptron.

4. The Wehr�/Laurent inverse problem

In Fig. 3 of their paper, Wehr and Laurent

(1996) display an example of the response of two

specific neurones to nine mixtures of odours.

Significant results were obtained during the first

four reverberations of the (LFP). They can be

presented as six different binary patterns (active/

inactive), as shown in Fig. 1, obtained by thresh-

olding the firing probabilities, with a threshold of
0.3. Therefore, each pair of temporal patterns can

be viewed as a spatiotemporal code for the

corresponding odour.

The inverse problem defined by the data of Fig.

1 cannot be solved without introducing hidden

neurones, since the deterministic dynamics of Eq.

(1) cannot lead to repeating the three [1 1] states

of pattern number 1 unless the system is in a fixed
point (which is obviously not the case in this

sequence). Therefore, this inverse problem requires

at least two hidden neurones. For any given

sequence, which leads to the set of constraints

�xi;t; the existence of a solution to the set of

inequalities (5) is investigated by using the Ho�/

Kashyap algorithm (Ho and Kayshap, 1965). We

used the following procedure: starting with all

neurones in a quiescent state (except for the bias

g0), the first states of the hidden neurones were

chosen arbitrarily. The resulting constraints were

determined, and the next states were chosen

appropriately, using at each step the Ho�/Kashyap

algorithm to find the allowed activities of the

hidden neurones, thus taking into account the

constraints introduced by the previously chosen

states. Each choice of states leads to new con-

straints �xi;t; some of which may be repeated, or be

combinations of existing ones. At each step, the

states that introduced the smallest number of new

constraints were chosen. Through this greedy

stepwise procedure, an appropriate sequence of

activities was found.

Table 1 presents a result derived in the manner

outlined above, with three hidden neurones.

Once the full set of sequences for all neurones

(hidden and observed) is known, the possible

solution of the synaptic matrix compatible with

this set can be derived, using a Perceptron. For

instance, a possible solution for matrix W , and six

input vectors that lead to the dynamics of Table 1,

are given in the caption of Fig. 3.

In this section, we showed how to design a fully

connected network of binary neurones that repro-

duces experimentally observed codes, namely the

codes observed by Wehr and Laurent in the

olfactory system. In the next section we show

how to use this network as a guide to designing a

more biologically plausible model based on

Hodgkin�/Huxley (HH) type neurones.

Table 1

Possible binary activities of three hidden neurones allowing a solution, with N�/5, of the Wehr�/Laurent problem

Neurone Sequence

t�/ 1 2 3 4 t�/ 1 2 3 4 t�/ 1 2 3 4 t�/ 1 2 3 4 t�/ 1 2 3 4 t�/ 1 2 3 4

g1�/PN1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0

g2�/PN2 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0

g3�/H1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0

g4�/H2 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1

g5�/H3 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

PN1 and PN2 are the experimentally recorded neurones, H1, H2 and H3 are hidden units.
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5. Network of Hodgkin�/Huxley neurones

The network of HH neurones was constructed

with Genesis (Bower and Beeman, 1998), keeping

the same synaptic matrix and the same inputs as

the above model. This approach provides a power-

ful guide for the design of the HH network:
otherwise, the problem of finding all the para-

meters involved in the network described below

would have been essentially intractable. The neu-

ronal units were as simple as possible, with a

somatic compartment and a single dendritic one;

an axonal element was added to trigger the

synaptic activities according to spike emission.

The neurones were synchronised by an external
clock, implemented as a periodic input.

5.1. Neurone and synapses

The two compartments of each HH neurone are
shown in Fig. 2; the list of parameters and

equations used for the simulation of this neurones

are given in Appendix A, and the values of the

parameters are displayed in Table 2. The somatic

compartment comprises sodium and potassium

ionic channels. The dendritic compartment com-

prises inhibitory (GABA: GABAergic) and exci-

tatory (Glu: Glutamatergic) synaptic channels,
corresponding respectively to the negative and

the positive values of the connection matrix.1

The membrane potentials at dendritic and somatic

levels of the formal neurone are solutions of

coupled differential equations (Eqs. (A-4) and

(A-5) in Appendix A). The spike emission corre-

sponds to the detection of the membrane depolar-

isation at the somatic level.

5.2. Network

The connections between neurones occur

through synapses (whose response is given by

Eq. (A-3)). Each synaptic connection S has two

parameters: its weight WS , and its delay DS

between a spike emission and a pre-synaptic

engaging. In order to take advantage of the results

of the simple model, three constraints were taken

into account:

. two action potentials emitted simultaneously

should elicit simultaneous responses in both

excitatory and inhibitory synapses, around the

next time step defined by the external clock;

. when the same number of excitatory and
inhibitory synapses2 are activated, no action

potential should be emitted by the post-synaptic

neurone; conversely, if the number of activated

excitatory synapses exceeds the number of

inhibitory synapses by one or more, an action

potential should be emitted;3

. the model is of first order: its present activity

depends only on its activity at the previous time
step, i.e. its memory does not exceed one time

step.

Fig. 2. Genesis two-compartment representation of a Hodgkin�/Huxley neurone, with spikegen as an axonal type module.

1 At the antennal lobe level, both excitatory and inhibitory

synapses are found: the first are essentially related to the

afferent receptor cell axons and the second to the interneurones.

2 Because conductances are additive, M synapses of weight 1

are equivalent to one synapse of weight M.
3 Inputs and thresholds are considered as acting through

synapses too.
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In order to satisfy the first constraint, slightly

different values must be assigned to the synaptic

delays of the excitatory (DGlu) and inhibitory

synapses (DGABA): this guarantees that the con-

ductance responses to action potentials emitted

simultaneously by pre-synaptic neurones reach

their maximum simultaneously around the next

time step of the external clock.

The second constraint requires to define appro-

priately a maximal synaptic conductance for

excitatory (G0
Glu) and inhibitory synapses

(G0
GABA), which will serve as unit values for each

type of synapse, in order to make sure that: (i) an

inhibitory synapse of weight M will compensate

the effect of an excitatory synapse of same weight;

and that (ii) a single extra unit excitation will drive

a spiking behaviour of the post-synaptic neurone;

this should hold in a large range of values of M ,

typically from 1 to 200. In other words, a synapse

of weight M in the network of simple binary units

corresponds to a synapse of weight MG0
Glu in the

network of HH units if M is positive, and

MG0
GABA if M negative. Therefore, when the

values G0
Glu and G0

GABA are appropriate, MG0
Glu

and MG0
GABA applied on the same neurone do not

elicit any action potential, while (M�/1)G0
Glu and

MG0
GABA elicit an action potential. Hence, in order

to relate the analytically tractable network to the

more biologically plausible one, each positive

value of synaptic connections, Wij , is represented

by a maximal synaptic conductance WijG
0
Glu, and

each negative synaptic connection is represented

by a maximal synaptic conductance WijG
0
GABA.

Finally, in order to make sure that the network

‘memory’ does not exceed one time step, the

external clock frequency fc should be low enough

that, before any new pre-synaptic spike, all synap-

tic conductances are reset to zero.

5.3. Inputs and threshold

Two synchronous generators emit regular spikes

at frequency fc; one generator sends spikes to the

excitatory synapses of the neurones, while the

other sends spikes to their inhibitory synapses, in

order to take into account the positive and

negative values of the �R/s (in caption of Fig. 3).
As mentioned for the synaptic connection values,

each input value (with 0.5 subtracted, the value of

the threshold ui of the formal model) is multiplied

by the corresponding maximal synaptic conduc-

tance, i.e. G0
Glu for positive values and G0

GABA for

negative ones; hence an input Ri on neuron i in the

network of binary neurones corresponds to a

maximal synaptic conductance RiG
0
Glu if Ri is

positive or to RiG
0
GABA if Ri is negative.

6. Simulation results

Genesis simulations were performed on the

model described above, by applying the exponen-

tial Euler integration method with an integration

time step of 0.01 ms.4 All N�/5 formal neurones
were initially inactive; an input was applied to the

synapses at time t�/0.2 sec, which corresponds to

discrete time t�/1 in the binary neural model. Fig.

3 shows the six simulated recordings of the

Table 2

Numerical values of parameters in Genesis HH model

/Gmax
Na / /Gmax

K / /Gmax
Glu/ /Gmax

GABA/ /X NA
power/ /Y NA

power/ /X Glu
power/ /Y Glu

power/ /tGlu/ /tGABA/

3.4 mS 1 mS 5�/10�10 S 5�/10�10 S 3 1 2 1 2 ms 20 ms

Em E ?m Cm C ?m Rm R ?m ENa EK EGlu EGABA

�/70 mV �/59 mV 6.3 pF 28.2 pF 530.5 MV 117.9 MV 45 mV �/70 mV 45 mV �/90 mV

R ?a GGlu
0 GGABA

0 DGlu DGABA fc Vth tabs aNa, bNa aK, bK

12.7 kV 10 nS 24 nS 0.2 ms 0.18 ms 5 Hz 0.5 mV 0.05 s Na-mit-usb K-mit-usb

‘Na-mit-usb’ and ‘K-mit-usb’ are names of modules available in Genesis.

4 The value of the integration time step is not critical and can

be varied between 0.001 and 0.1 ms without any significant

change in the results.
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membrane potential (V ?m) of the five neurones, in

response, respectively, to the six different inputs

indicated in the caption of Fig. 3. The spiking

activity of the neurones occurs at precise time bins,

Fig. 3. Six different spatiotemporal patterns obtained with a Genesis simulation of Hodgkin�/Huxley type neurones. They correspond

exactly to the binary codes of Table 1, and the first two lines under the input (clock) line reproduce respectively the activities of PN1

and PN2 in the Wehr�/Laurent experiment. Synapses and inputs have the following values (the threshold ui �/u�/0.5 for all neurones,

with the trivial state �0 as initial state):

W�

0 �2 �5 �3 0

6 2 8 �14 0

1 1 0 �2 1
�4 6 1 1 3

4 �1 2 �4 0

0
BBBB@

1
CCCCA;

and

�R1�

3
5

�3

�2
0

0
BBBB@

1
CCCCA; �R2�

3
0

�3

0
0

0
BBBB@

1
CCCCA; �R3�

10
2

2

0
�5

0
BBBB@

1
CCCCA; �R4�

4
�7

0

0
�6

0
BBBB@

1
CCCCA; �R5�

9
0

1

2
�4

0
BBBB@

1
CCCCA; �R6�

2
0

0

0
�4

0
BBBB@

1
CCCCA
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corresponding to the external clock, and it repro-
duces exactly the binary codes of Table 1; the first

two neurones fire precisely according to the firing

pattern of neurones PN1 and PN2 of Wehr and

Laurent’s experiment. Thus, the Wehr and Laur-

ent’s experimental data was reproduced quantita-

tively through a simulation of Hodgkin�/Huxley

type neurones with appropriately tuned para-

meters, using the information gathered from the
network of binary neurones.

7. Adding noise to the model

Since some parameters of the synapses had to be
tuned, we investigate the robustness of the results

obtained with this set of parameters to the addi-

tion of noise. In our Genesis simulations, the noise

was represented by two additional input genera-

tors, one to excitatory synapses, one to inhibitory

ones, whose spikes were random with a spiking

rate around a given mean frequency fn . The

synaptic weights of these connections have a single
module, Wn . Fig. 4 shows a set of 21 simulations

performed for input �R1; the spikes generated

during each simulation for each neurone were

recorded and shown as dots. Although extra spikes

are generated outside the temporal bins, the codes

of pattern 1 can be clearly recognised.

8. Discussion and conclusion

Models of binary neurones have attracted a lot

of attention because they can be analysed mathe-

matically in a reasonably straightforward fashion,

but they definitely lack biological plausibility;

conversely, networks of more realistic neurones

tend to be intractable, so that their analysis relies

solely on computer simulations, involving numer-

ous parameters that can vary in wide ranges of

values. In the present study, we have shown that

one can have the best of both worlds: the binary

model allows the designer to understand in depth

the principles of operation of the neural system

under investigation, and it serves as a guide to the

design of biologically plausible models. We have

illustrated this methodology on an example of

olfactory coding, and we have been able to

reproduce experimental data accurately. In a

more theoretical paper (Quenet and Horn, 2002)

several analytical properties of a fully connected

network of binary units are investigated, such as

its coding capabilities, and the size and character-

istics of the basins of attractions, which are related

to the robustness of this type of coding against

input noise. In future work, more biological

plausibility will be achieved by relaxing the

assumption of strict synchronisation, and by

introducing the following constraints in the model:

(i) the synapses of a given neurone should have a

Fig. 4. Spike recordings for 21 simulations performed with input �R1
/�/(3, 5, �/3, �/2, 0), which leads the network to exhibit the first

pattern of Table 1. Left, no noise. Right, in the presence of additional noise (Wn �/0.5 and fn �/10 Hz) spurious spikes occur, but the

first pattern of Table 1 are easily recognised.
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single sign; (ii) the inputs should be positive and
mimic the odorant mixtures used in the experi-

ments. The additional coding capabilities gained

through the introduction of spiking neurones will

be investigated in a more detailed fashion.

Appendix A

Each formal HH type neurone has two com-

partments (Fig. 2). The somatic compartment

comprises sodium and potassium ionic channels,

whose voltage-dependent conductance GI (with

I�/K or I�/Na) obeys the following equation:

GI �Gmax
I � X X I

power � Y Y I
power (A-1)

where Gmax
I is the maximal channel conductance, X

is the ionic activation variable, Y is the ionic

inactivation variable. X I
power/ and Y I

power/ depend on

both the channel and neurone types. X and Y are
functions of time t and of the membrane potential

Vm; they obey the following differential equation,

where Z represents either X or Y :

dZ

dt
�a2(V ?m�V0) � [1�Z]

�bZ(V ?m�V0) � Z (A-2)

where V0 is the resting potential, and both

aZ(V ?m�V0) and bZ(V ?m�V0) are tabulated and/

or interpolated functions.

The dendritic compartment comprises inhibi-
tory (GABA: GABAergic) and excitatory (Glu:

Glutamatergic) synaptic channels, whose conduc-

tance response to a pre-synaptic spike at t�/0 is

given by:

GS(t)�Gmax
S �

t

tS

exp

�
1�

t

tS

�
(A-3)

where S stands for either GABA or Glu. GS
max is

the maximal conductance of a synapse of S type,

reached when t�/tS , its time constant.

The membrane potentials Vm(t), V ?m(t ), at

dendritic and somatic levels of the formal neurone

respectively, are solutions of the following coupled

differential equations, derived from Kirchoff’s law
(see Fig. 2) where the electric parameters are

Cm

dVm

dt
�

(Em � Vm)

Rm

�
X

S

[(ES�Vm) � GS]

�
(V ?m � Vm)

R?a
(A-4)

C?m
dV ?m

dt
�

(E?m � V ?m)

R?m
�

X
I

[(EI �V ?m) � GI ]

�
(Vm � V ?m)

R?a
(A-5)

The spike emission, delivered by a module

‘spikegen’ in Genesis, corresponds to the detection
of the membrane depolarisation at the somatic

level; it occurs when V ?m(t) becomes higher than

Vth, a fixed threshold characterising the module, if

the last spike was emitted before tabs, an absolute

refractory period.

References

Bower, J.M., Beeman, D., 1998. The Book of GENESIS, 2nd

edition. Springer Verlag, Berlin.

Ho, E., Kayshap, R.L., 1965. An algorithm for linear inequal-

ities and its applications. IEEE Trans. Elect. Comp. 14,

683�/688.

Hopfield, J.J., 1982. Neural networks and physical systems with

emergent collective computational abilities. Proc. Natl.

Acad. Sci. USA 79, 2554�/2558.
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