
Applied Statistical Modeling and Data Analysis, 2005

LEARNING NUMBERS FROM GRAPHS

Aurélie Goulon1, Arthur Duprat1,2, Gérard Dreyfus1

École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
(ESPCI-ParisTech)
1Laboratoire d’Électronique, 2Laboratoire de Chimie Organique (CNRS UMR 7084)
10, rue Vauquelin
75005 PARIS, France
(e-mail agoulon@libertysurf.fr, Arthur.Duprat@espci.fr, Gerard.Dreyfus@espci.fr)

Abstract. The recent developments of statistical learning focused mainly on vector
machines, i.e. on machines that learn from examples described by a vector of
features. There are many fields where structured data must be handled; therefore, it
would be desirable to learn from examples described by graphs. The presentation
describes graph machines, which learn real numbers from graphs. Applications in
the field of Quantitative Structure-Activity Relations (QSAR), which aim at
predicting properties of molecules from their (graph) structures, are described.

1 Introduction
The present paper describes graph machines, i.e. machines that learn numbers from
structured data, which can be described by graphs, in contrast to conventional
approaches such as neural networks, kernel machines, support vector machines,
which handle vectors. Unlike recursive neural networks, graph machines can handle
any type of graph, whether cyclic or not. The first part of the paper is devoted to
definitions. The second part is devoted to examples of applications; first, academic
validations are described, showing that graph machines are indeed able to learn
numbers related to the graph structure itself, such as graph diameters or Wiener
indices. We proceed to show that graph machines are very efficient for QSAR and
QSPR applications; comparisons with results obtained by other authors on the same
data show that graph machines outperform standard machine learning techniques
and recursive neural networks, with the computational advantage of exempting the
model designer from performing the steps of computing and selecting descriptors,
which are generally at least as costly as the training of the machine.

2 Graph machines
Before describing graph machines, some facts and definitions pertaining to vector
machines are described cursorily.

2.1 Vector machines
Conventional numerical machine learning methods aim at learning applications from
ℜn to ℜm: data is in the form of pairs of vectors, the input vector being of dimension
n, and the output vector of dimension m. In all the following we consider that m = 1

Applied Statistical Modeling and Data Analysis, 2005

without loss of generality. When the task to be learnt is a classification task, the
output is often binary; for process modeling, whether static or dynamic, the output is
real. The techniques of machine learning for static modeling are very similar to
statistical regression techniques: the main difference is the fact that statistical
regression is essentially interested in the values of the parameters of the models,
whereas modeling by machine learning is essentially interested in the predictions of
the models. Support vector machines and neural networks are typical vector
machines; support vector machines were designed mainly for classification tasks,
with excellent performances; neural networks are more suitable for modeling,
whether static (feedforward neural networks, also termed Multilayer Perceptrons), or
dynamic (recurrent neural networks).
In all the following, we focus on static modeling, i.e. learning from examples an
application of ℜn to ℜ. The model is sought within a family of parameterized
functions gθ(x), where x is the vector of variables (of dimension n) and θ is the
vector of parameters (of dimension p). Training is performed by minimizing a cost
function, which is usually the least squares cost function, with respect to the
parameters:

 J !() = yp
i
" g

!
xi()()

2

i=1

N

(1)

where the summation runs on all N examples of the training set, yp
i is the value of

the quantity to be modeled for example i, and xi is the vector of variables for
example i.

2.2 Graph machines

2.2.1 Definition
We turn now to the problem of learning an application between a set of graphs and a
corresponding set of real (or possibly binary) numbers. To start with, we consider
directed acyclic graphs only. A natural idea is to build a model whose mathematical
structure is the same as the structure of the input graph: each node of the graph is a
parameterized function, and the model is a composition of that function, which
reflects the structure of the graph. In the field of neural networks, such models are
known as folding networks (the function present at each node is a feedforward
neural network), but the idea can be extended to other types of machines (for a
review see [Hammer, 2003]). Consider, as an illustration, the graphs shown on
Figure 1:
• the graph machine associated to graph 1 is:

f
!,"

1
= G

"
g
!
(x), g

!
(x), g

!
(x){ } ;

• the graph machine associated to graph 2 is:

f
!,"

2
= G

"
g
!
(g

!
(g

!
(x), g

!
(x)),0), g

!
(g

!
(x), g

!
(g

!
(x), g

!
(x))){ } ;

• the graph machine associated to graph 3 is:

f
!,"

3
= G

"
g
!
(g

!
(g

!
(x), g

!
(g

!
(g

!
(x),0), g

!
(g

!
(x), g

!
(x)))),0),0{ } .

Applied Statistical Modeling and Data Analysis, 2005

In the above examples, the size of x must be at least equal to the maximal in-degree
dm of the nodes of the graph. For a node of in-degree d < dm, dm—d components of x
are arbitrary, and may be taken equal to 1 for instance.

Figure 1

For generality, in the above examples, the function GΘ associated to the final root is
different from the function gθ of the other nodes. That is by no means necessary; in
all examples described in the present paper, all nodes including the root were
assigned the same function.
The size of vector θ (and the size of Θ) depends on the complexity of the mapping,
just as for vector machines.

Definition: a graph machine is a set G of parameterized functions, constructed as
described above from the same functions gθ(x) (and GΘ(x)), which are
representations of the graphs of the training set. The size of x is lower bounded by
the maximal in-degree of the nodes of the graphs.

2.2.2 The training of a graph machine
The training of a graph machine is performed by minimizing a cost function with
respect to the parameters θ (and Θ); in all the examples described below, the least
squares cost function was used:

 J !,"() = yp
i
f!,"

i()
2

i=1

N

$ (2)

where yp
i is the quantity to be learnt, associated to graph i. Note the difference with

the cost function (1) that is minimized during the training of a vector machine:

J !() = yp
i
" g

!
xi()()

2

i=1

N

.

Instead of training a single parameterized function with different input output-pairs,
different parameterized functions, sharing the same set of parameters, are trained
with a single example each.
As mentioned above, the fact that two sets of parameters, θ and Θ , are used in graph
machines is unimportant. A single parameter vector θ is often sufficient.
In practice, training is performed much in the same way as vector machines. One has

Applied Statistical Modeling and Data Analysis, 2005

 !J

!"k
=

!J
i

!"ki=1

N

where J
i
= yp

i
$ f",%

i()
2

 (3)

and θk denotes the k-th component of vector θ . For neural networks, the gradient of

Ji with respect to each parameter !J
i

!"k j

is computed by backpropagation on the

network that represents graph i; !k j denotes the j-th occurrence of parameter θk in

graph i. Denoting by n!
k

i the number of occurrences of parameter θk in graph i, the
shared weight trick consists in setting

 !J
i

!"k
=

!J
i

!"k jj=1

n
"k

i

(4)

(if the root node has the same parameters as the other nodes, then n!
k

i is equal to the
number of nodes in graph i). Therefore, one obtains:

 !J

!"k
=

!J
i

!"k jj=1

n
"k

i

#
i=1

N

(5)

Finally, the cost function (2) is minimized by any appropriate gradient optimization
method (Levenberg-Marquardt, BFGS, conjugate gradient, etc.), using gradient (5).

2.2.3 Model selection
All the tricks-of-the-trade that are usually applied to vector machines can be applied
to graph machines as well: validation, cross-validation, leave-one-out, bootstrap
estimates of the generalization error, etc. In the following examples, cross-validation
is used for model selection; the root mean square error on a set (training or
validation) is defined as:

 RMSE =
1

N
yp
i
! f

",#
xi()()

2

i=1

N

$ (6)

where N is the size of the set.

3 Examples

3.1 Neural-network-based graph machines
In all examples described below, the function gθ is a neural network. Therefore, a
machine is made of identical neural networks, connected with the same structure as
the nodes in the graph. For example, consider a node A with n parent vertices Bi,
i = 1, …., n. An elementary neural network (A) is assigned to that node: its inputs
are (i) the outputs of the networks (

i
B), and (ii) additional inputs that provide

information on the node (e.g. its degree). If the graph is cyclic, the degree of the
node is provided by one such input, so that a cyclic graph is first turned into a

Applied Statistical Modeling and Data Analysis, 2005

directed acyclic graph by deleting as many edges as necessary, while retaining the
information about the original graph structure.

3.2 Learning graph properties

In order to validate the approach in an academic way, graph machines were trained
to learn graph properties. For all examples described below, a data base of 150
randomly generated graphs, featuring 2 to 15 nodes and 0 to 9 cycles was created.
Various splits between training and validation sets were performed on that data base.

3.2.1 Learning the number of nodes and cycles of a graph
The easiest problem consists in learning the number of nodes of a graph, since it is a
linear problem. The number of vertices N is equal to the number of elementary
functions gθ in the graph machine, and the number of cycles of a connected graph is
given by:

C = E – N + 1
where E is the number of edges. Therefore, graph machines with linear elementary
functions

g
!
(x) = !

i
x

i

i

"

should learn those tasks. As expected, for all splits between training and validation
sets, the task was perfectly learnt and the error was equal to zero.

3.2.2 Learning the diameter of a graph
The diameter of a graph is the length of the shortest path between its most distant
nodes:

D = max
u,v d(u, v)

where d(u, v) is the distance (the shortest path) between nodes u and v. In the
database under investigation, that index ranges from 1 to 9. That is clearly a non-
linear property; therefore, the elementary function was a neural network with four
hidden neurons. The RMS error (relation (6)) on the training set is 0.36, and the
RMS validation error (10-fold cross-validation) is 0.53. Since the index is an integer
ranging from 1 to 9, the prediction is excellent given the complexity of the graphs.

3.2.3 Learning the Wiener Index of a graph
The Wiener Index of a graph G is the sum of the distances between the vertices of
G. That index was first defined by the chemist H. Wiener, in order to investigate the
relationships between the structure of chemicals and their properties:

W (G) =
1

2
d(u,v)

u,v

!

In our database, that index ranges from 1 to 426.
10-fold cross-validation was performed with a 4-hidden neuron elementary neural
network, leading to a RMS validation error of 7.9.

Applied Statistical Modeling and Data Analysis, 2005

The above examples (together with other examples not reported here) show the
ability of graph machines to learn from the sole data structure, without any need for
extraneous descriptors.
In addition, they prove that indices such as the Wiener index need not be used as
descriptors (e.g. in QSAR as described in the next section) since the information is
present in the structure of the machine.

3.3 Application to the prediction of chemical properties of molecules

3.3.1 Graph machines for QSPR/QSAR
Graph machines are particularly appropriate for the prediction of molecular
properties in QSPR (Quantitative Structure-Property Relations) and QSAR
(Quantitative Structure-Activity Relations). A molecule can be described as a
directed graph by associating each non-hydrogen atom to a node and each bond to
an edge. The original graphs are preprocessed in order to turn them to acyclic graphs
as described in section 3.1. Provision is made for extraneous inputs that code (in a
one-out-of-n code) for the nature of the atoms, their degree or their stereochemistry
for example. Therefore, any type of molecule can be handled, be it acyclic, cyclic or
even aromatic. Figure 2 shows how an aromatic compound can be described as a
graph; the digits are the degrees of the nodes.

Figure 2

3.3.2 Learning and predicting boiling points of alkanes
Graph machines were first tested on the prediction of the boiling points of a set of
linear or branched acyclic alkanes. Table 1 compares the results obtained by graph
machines to those found in the literature.

 RMSE (K)
(training)

RMSE (K)
10-fold cross-validation

Graph machines 1.0 1.5

Recursive neural networks
[Bianucci et al., 2000] 2.0 3.0

Conventional neural networks
[Cherqaoui and Villemin, 1994] 2.2 2.7

Table 1

Applied Statistical Modeling and Data Analysis, 2005

3.3.3 Predicting the toxicity of phenols
Phenols are a family of chemicals that are of current industrial use as biocides or
disinfectants. Most synthetic phenols are toxic and considered as dangerous
pollutants. We studied a set of 153 of these phenols, whose toxicity to a particular
kind of cells, Tetrahymena pyriformis, was available ([Schultz, 1997]). This
database is especially interesting since it contains complex molecules with 6 kinds
of heteroatoms, and it deals with a property that is close to pharmacological
properties.
In order to compare the performances of graph machines to those obtained with
other methods - Multiple Linear Regression (MLR), Support Vector Machines
(SVM) and Radial Basis Function Neural Networks (RBFNN) - the same protocol as
used in [Yao et al., 2004] was implemented: the database was split into training and
validation sets of 131 and 22 examples respectively. The results obtained with graph
machines built with 4 and 5 hidden neuron (GM-4N and GM-5N) elementary neural
networks are summarized in Table 2, where they are compared to those obtained
with the previously cited methods.

 Method Learning Validation

GM-4N 0.17 0.29

GM-5N 0.09 0.32

MLR 0.30 0.46

RBFNN 0.19 0.29

RMSE

SVM 0.22 0.36

Table 2

For a more rigorous assessment, 7-fold cross-validation was also performed on the
same set with a 4 hidden neuron network. The RMSE obtained were then
respectively 0.16 and 0.29 in learning and validation. No test set was provided in the
referenced articles.

The above results show that graph machines compare favorably with other QSAR
methods for the prediction of that biological activity, with an accuracy that is at least
as good as the accuracy of the methods investigated by other authors, be it on the
learning or on the validation sets. However, whereas the other methods require the
prior selection and measurement or computation of descriptors such as
hydrophobicity (log Kow), acidity constant (pKa), and frontier orbital energies
(HOMO and LUMO), the structure of the molecules is the only information required
for graph machines to perform accurate predictions. This is a twofold advantage.
First, graph machines are much less computationally expensive than methods that
require the design, selection and computation of descriptors. Furthermore, since no
specific descriptors are selected, a graph machine implemented for a given molecule
can be used for the prediction of any property of that molecule: the only requirement
is a re-training of the machine, whereas conventional vector machines require the

Applied Statistical Modeling and Data Analysis, 2005

selection and computation of an appropriate set of descriptors for each property to
be predicted.

3.3.4 A classification task: classification of the molecules as aromatics/ non
aromatics

Graph machines can perform classification tasks, just as neural networks or SVM’s
do. As a test example, 240 molecules were classified into two classes: molecules
that feature no aromatic cycle and molecules that feature at least one aromatic cycle.
10-fold cross-validation was performed on that database, leading to a training
classification error rate of 0% and a validation error rate of 2% with a 4 hidden
neuron elementary neural network. A test set of 40 examples lead to an error rate of
0%. Again, no descriptor whatsoever was computed prior to performing
classification.

4 Conclusion
In the present paper, graph machines have been described, and some of their
applications have been outlined. The results presented here show that graph
machines outperform vector machines and recursive neural networks. The prediction
of the properties of molecules from their structure is obviously an important field of
application of our approach, but it can be conjectured that graph machines may be
beneficial in all fields where learning must be performed from structured data.

References
[Bianucci et al., 2000]A.M. Bianucci, A. Micheli, A. Sperduti, and A. Starita.

Application of cascade correlation networks for structures to chemistry.
Applied Intelligence, pages 115-145, 2000.

[Cherqaoui and Villemin, 1994]D. Cherqaoui and D. Villemin. Use of a neural
network to determine the boiling point of alkanes. Journal of the Chemical
Society, Faraday Transactions, pages 97-102, 1994.

[Hammer, 2003]B. Hammer, Perspectives on Learning Symbolic Data with
Connectionistic Systems. In R.Kühn, R.Menzel, W.Menzel, U.Ratsch,
M.M.Richter, I.-O.Stamatescu, eds., , Adaptivity and Learning, pages 141-160,
Springer, 2003.

[Schultz, 1997]T.W. Schultz. TETRATOX: The Tetrahymena pyriformis population
growth impairment endpoint - A surrogate for fish lethality. Toxicological
Methods 7, pages 289-309, 1997.

[Yao et al., 2004]X. J. Yao, A. Panaye, J.P. Doucet, R.S. Zhang, H.F. Chen, M.C.
Liu, Z.D. Hu, and B.T. Fan. Comparative Study of QSAR/QSPR Correlations
Using Support Vector Machines, Radial Basis Function Neural Networks, and
Multiple Linear Regression. Journal of Chemical Information and Computer
Sciences, pages 1257-1266, 2004.

