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INTRODUCTION 

 
For a long time, it was considered that neurons process or/and code information via 
1firing rates. The precise timing of spikes was thought to be an irrelevant feature of a 

random Poisson process and most of experimental results were interpreted according to 

this point of view. As a consequence, theoretical models were built in terms of rate 

coding. Recent analysis at a fine time scale of simultaneous neuronal activities 

demonstrated the importance of precisely timed spike trains as well as synchronization 

in some neuron clusters. These data raised new issues about the use of both spatial and 

temporal information in coding processes, notably in sensory systems which deal with 

this general question: how the nervous system transforms afferent signals provided by 

sensory receptors into internal representations and code sensory information in the 

subsequent stages of the sensory pathways? Let us take the example of olfaction (6, 7, 

9, 14), the set of sensory receptors which are activated by a specific odorant stimulus 

represents a spatial mapping of this stimulus. The complex spatio-temporal patterns 

built at the next stage of the olfactory system form the input to the level where 

discrimination, storage, and retrieval of stimuli are supposed to be performed (10).  

The dynamical properties of the neuron assemblies are largely determined by their 

connectivity, i.e. the distribution of connections, by the strength of the synaptic 

contacts, by the propagation delays and by the input they receive. As soon as recurrent 

connectivity occurs between non-linear units, the relationship between the network 

architecture and the dynamical properties of the units are complex, and not yet fully 

understood. However, such dynamical properties play a major role in processing 
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information and in learning, as they are the basis of coding. In addition they may 

participate to a “remodeling” of the architecture by inducing syn2aptic modifications.  

This is why the analysis of structure-function relationship is so important, even if 

complex.  

In this context, the locust olfactory system can be considered as a case study for several 

reasons: 1) a relatively limited number of neurons and 2) a large corpus of biological 

data about synaptic connectivity, firing patterns, associative learning procedures (1, 2, 

6, 7, 9, 10, 14). This system provides an appropriate framework for theoretical studies 

aiming at understanding how networks process spatial and temporal dimensions for 

coding information (1, 2). In short, an olfactory stimulus activates thousands of receptor 

neurons and induces temporally structured activities in some of the hundreds of the 

projection neurons (PN) and local interneurons (LN) at the level of the Antennal Lobe 

(AL). These activities result in an oscillatory local field potential (LFP): the oscillations 

persist after ablation of the neurons which are the PN targets, i.e the Kenyon cells in the 

Mushroom Body (6, 7, 10), which strongly suggests that these oscillations are driven by 

the PN themselves. In the coding process, it seems that each odor is discriminated not 

simply by an ensemble of synchronized neurons but mainly by a specific time evolution 

of their spiking. Some neurons are synchronized only during one or several epochs of 

the oscillatory response. 

There are many models of the insect olfactory network, and simulations implementing 

integrate-and-fire or detailed conductance-based neuron models exhibit the type of 

complex dynamics experimentally observed in response to stimulus (1, 2). Detailed 

conductance-based neuron models with many ion channels of the Hodgkin-Huxley type 

require the definition of a large set of parameters featuring specific neuron properties. 

In addition, several functions are needed to describe the synaptic conductances 

involved in the connections between neurons. These models capture the fine 

modulations of membrane polarization and produce distributions of action potential 

timings which can be compared to those observed in experimental data. However, in 

these models, the effects of intrinsic properties of neurons and synapse types are 

indissociable from the network configuration: therefore, it is very difficult to analyze, 

for instance, what are the connectivity parameters responsible for resulting dynamics.  
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We have attempted to tackle this problem by constructing networks of simple time-

discrete McCulloch and Pitts neurons (MC-P) (11). We previously demonstrated that 

small MC-P networks allow an analytical approach for computing appropriate synaptic 

matrix and input vectors compatible with specific binary spatio-temporal codes (4). In 

addition, we showed that using the same computed synaptic matrix, a network of 

Hodgkin-Huxley type neurons with an adapted time scale produces the same coding 

sequences. Here, we show that large MC-P networks are able to exhibit rich types of 

dynamics, from which both oscillations and distributed synchrony may co-emerge. 

Then we show that it is possible to use the designed connectivity matrix in MC-P 

networks in more realistic neuron models and to get similar dynamics, provided an 

appropriate "time grid". Thus MC-P networks, whose dynamics is entirely defined by 

the network configuration and the input,  appears as the best tool in order to understand 

how the activity patterns are generated in recurrent networks. With such models, we 

approach a possible definition of the respective roles of the input, of the network 

connections and of the delays in driving the network towards chaotic behavior, 

oscillations or clusters of neurons firing synchronously.  

 

METHODS 

I-Time discrete McCulloch and Pitts neurons (MC-P)  

A- The network model of MC-P units.   

Our model is a fully connected network of MC-P units whose binary states are 0 or 1. 

The units are updated synchronously according to Eq. 1. 
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Here 
 
ni t( ) is the binary state, 0 or 1, of neuron i at time t, wij  is the synaptic weight 

from neuron j to neuron i, 
 
τ ij is the transmission delay from neuron j to neuron i, Ri  is 

an external input to neuron i, and H is the Heaviside function, whose value is nil if its 

argument is non positive, and 1 if its argument is strictly positive. The random 

connectivity of the network was set according to the following rules: in the connection 

matrix encoding the synaptic weights (if not nil, these weights are  Wex  and Win  

respectively for excitatory and inhibitory connections), every excitatory and inhibitory 
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neuron sends an equal number of contacts, respectively to Kex and  Kin  post-synaptic 

neurons, chosen at random. This leads to a recurrent synaptic architecture. In addition, a 

random set of neurons receives an input from Kr  units representing the synaptic input 

from sensory receptors with a Wr  weight. A non-uniform matrix delay takes into 

account different transmission delays: here τ ij = 1, i.e. one time step of the parallel 

update of the MC-P units, when neuron j is excitatory and τ ij = 2 , when it is inhibitory.  

B-A descriptor of the degree of distributed synchrony, the Normalized Euclidian 

Distance (NED)  

In this type of recurrent networks, provided a balance between excitation and 

inhibition, the dynamics is usually cyclic with short cycles and total or partial 

synchrony. We want to quantify the temporal distribution of this synchrony (for details 

see 4). When, in response to an applied input, the excitatory neurons which participate 

to the dynamics are active at each period of the oscillatory cycle, we consider the 

activity pattern corresponding to this input to be a purely spatial code, since time brings 

no information. In the opposite case, the activities of the responding excitatory neurons 

are totally temporally distributed, i.e. the neurons active at one period of the cycle are 

silent during the other periods, in such a way that a specific set of active neurons 

identifies each period.  Such a dynamics represents the optimal use of the temporal 

dimension. In an intermediate situation, where both spatial and temporal dimensions are 

combined, the dynamics may exhibit a rich repertoire of spatio-temporal patterns. In 

our model, the dynamical neuronal behavior involves always the spatial dimension, and 

more or less the temporal one. We have defined an index (4) which reveals the mean 

degree of overlapping between subsets of neurons active at different periods of the 

cyclic global activity, the Normalized Euclidian Distance NED.  Let us suppose that 

during this time of observation the dynamics defines T periods of oscillation of the 

global activity; it is possible to define a distance matrix of size TxT whose general term 

dnm represents the Euclidian distance between the normalized vectors of neuronal 

activities at periods n and m respectively, as  indicated  in Eq. 2. 
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Then, the Normalized Euclidian Distance represents the mean value of all the terms dnm 

of the distance matrix, divided by the mean value of the distance matrix taken in the 

case of the optimal use of the temporal dimension (Fig.1).  

 
Fig 1.- Example of a complex spatio-temporal pattern observed in a recurrent network of MC-P units 

connected by a random matrix.  

The upper panel illustrates the activities (black squares) of the 100 excitatory units (PN), the lower panel 

shows the oscillations of the global activity (time course of number of active neurons). The distance dnm  

is computed for every pair of activity vectors Vn, Vm, corresponding respectively to the nth and mth 

oscillations.  

 

Therefore, in the case of a dynamics where each period of oscillation is defined by a 

specific set of active neurons, the value of NED is 1, while in the case of the pure 

spatial code, or total synchrony, NED is nil.  
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Note that for a value of NED = 0.5, the corresponding mean overlapping is about 0.7 



 6

(see fig. 3 in 4) . 

 

II-Time-continuous Integrate-and-Fire neuron: the Izhikevitch model (IFI). 

In the present study, we choose a recently defined Integrate-and-Fire model (5), the 

Izhikevic Integrate-and-Fire model (IFI). The IFI captures many biological properties 

of realistic Hodgkin-Huxley type conductance-based models but with a greater 

simplicity in hardware implementation. In this model, analytically, the potential of each 

unit is given by a bi-dimensional system of ordinary differential equations of the form: 
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 Eq 4 

 

v represents the membrane potential and a variable u is introduced for resetting the 

membrane potential after the spike reaches its maximal value (set at +30mV) and a,b 

are parameters defining the neuron type. Excitation currents are delivered with the 

parameter I. 

With an after-spike resetting defined by the condition, where appear two new 

parameters c and d:  

  

if v = +30 m V
v ← c
u ← u + d





  Eq 5 

When implemented in a program, Eq. 4 are discretized using the Euler method; with a 

time step=1 there is an iteration of Eq. 6 : 

 

  

vi(t +1) = (0.04vi(t)+ 6) ⋅vi(t)+140 - ui(t)+ Ii(t)
ui(t +1) = aibivi(t)+ (1− ai)ui(t)




                              Eq 6 

 

where the membrane potential vi(t)  and the recovery variable ui(t)are the variables for 

the ith neurone at time t. With the following values for the parameters : a=0.02, b=0.2, 

c=-65, d=2, this model exhibits a simple spiking behavior in response to a steady input 

current with a linear frequency-intensity relationship like in Hodgkin-Huxley neuron 

models. Note that, even if such formal neurons, IFI, are necessarily described on the 

basis of discrete time for computational purposes, the time scale represented here by the 
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integration time step is far smaller than the update time considered in the MC-P model. 

Indeed, the update time of the MC-P neurons must be larger than the typical refractory 

period of a neuron, which is one to two order of magnitude greater than an appropriate 

integration time step which allows an accurate computation of the time course of an 

action potential. This is why the IFI is considered as a "continuous time" neuron model 

when compared with the MC-P one. All the simulations based on both types of 

neuronal models have been performed with MATLAB. 

 
RESULTS 

 

I-Exploring the connectivity parameters with time-discrete MC-P neurons  
  
As there are no biological data for designing a specific connection matrix, we start by 

examining the dynamics produced by randomly connected networks (case 1: simple 

matrix). In our model networks, with the type of connection matrices defined above, the 

balance of excitation and inhibition produces different patterns of activity characterized 

by periodic oscillations corresponding to the fact that the initial group of neurons 

activated by the input, are inhibited by the network activity, then excited again with a 

possible recruitment of other neurons, etc…. It was recently suggested that some rare 

strong connections could play a major role in the dynamics of many brain networks 

(12), such effects were tested by adding to the first random matrix a second connection 

matrix with very sparse but stronger synaptic weights (case 2: double matrix). 

 

In both cases, the standard dynamical behavior of the network is oscillatory, with a 

period that is very robust with respect to modifications of the synaptic matrix and of the 

input. In very seldom cases, the dynamics exhibits fixed points. We performed 

simulations with the following parameters for the input :Kr = 10, Wr= 4, and for simple 

synaptic matrix : Kex= 4, Wex=1 , Kin = 40, Win= 5. NED has been computed for each of 

5000 random trials in both cases, i.e. for the simple matrix, and the double one, where 

the additional matrix is characterized by Kex =1, Wex =20, Kin =2, Win =10. The effects 

of adding few, but strong, synaptic weights is illustrated in Fig. 2 showing the value 

distribution for NED in the two cases. With the double matrix, NED distribution is 

clearly shifted towards higher values, around 0.5.  
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Fig 2. Color maps for the mean value of the Normalized Euclidian Distance (NED) based on 20 

simulations for each point of the bi-dimensional map 

The values are linearly color-coded to define equidistant contour lines according to the colorbar on the 

right.  

A: Contour maps of NED in dependence of two variable network parameters : the connectivity 

parameters  Kex and Kr. There are exceptional  points with values of NED>0.4.  

B: Contour maps for the mean dominant period of the oscillatory global activity and for the mean number 

of oscillating neurons in dependence of the same two variable network parameters : the connectivity Kex 

and Kr for random matrices. 

The upper panels show the maps corresponding to the networks  in which the connectivity was defined 

by matrices of "simple" type (case 1) 

The lower panels show the maps corresponding to the networks  in which the connectivity was defined 

by matrices of "double" type (case 2) 

 

The timing of neuronal spikes in oscillatory networks with partial or total synchrony is 

under the combined influence of external inputs and internal connections. Thus, we ran 

batches of simulations in which input connectivity Kr  was incremented from 1 to 80 
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while increasing  Kex  from 1 to 100 for a fixed value of Kin = 40; we repeated 20 

similar batches of simulations for each set of values (Kex, Kr): for each set of these two 

parameters, we computed the mean value of NED from the corresponding 20 

simulations. Again, the role of connectivity patterns corresponding to both cases of 

simple and double matrices are illustrated in Fig. 2. The color-coded maps show the bi-

dimensional evolutions of NED values versus Kex (x axis)  and Kr (y axis). The maps 

focus on a region of interest for the dynamical behavior, i.e., the region where NED 

varies significantly, while there are oscillations for a significant number of excitatory 

neurons in the network. This region corresponds to values of Kex and  Kr  respectively in 

the range of 1-30 and 1-40. Again, the effects of adding some few but strong synaptic 

weights in the case of the double matrix are clear: with the simple matrix, there are very 

few NED values reaching or exceeding 0.5, in contrast with the double matrix, for 

which there is a large domain of NED values around 0.5. The higher values of NED are 

observed when Kex  is in the range 4-10 and Kr  in the range 5-15. 

These results indicate that it is possible to define connection matrices which lead to 

spatio-temporal patterns associated to specific clusters of oscillatory neurons at each 

period of the global cyclic activity. In the case of the double matrix, both periodic 

dynamical behavior and high values of NED are robust against random realizations of 

this matrix and of the input vector. These possible rich spatio-temporal patterns are 

similar to those characterized by a “Distributed Synchrony” (8).  

II-Comparable dynamics in an IFI network 

We now address the question of dynamics in a network of "continuous time" neurons 

connected by the same synaptic matrix as in the discrete time MC-P network.  

In our IFI network model, inhibitory and excitatory neurons have the same 

characteristics in terms of time constants and threshold. When such neurons are 

connected to build a network, we consider the mutual influence of the neurons through 

the value of Ii(t) for each neuron in Eq. 6. Indeed, Ii represents all the influences each 

neuron i receives: i.e., Ii is a function of the balance between external and internal (from 

the network) inputs, summing both excitatory and inhibitory effects. At each time step t 

of the simulation, an appropriate value of Ii(t) has to be defined. Then, the membrane 

potential of neuron i is computed, and, if at time t, this potential reaches the value of 

vi(t)=30 mV, the state of neuron i takes the value ni(t)=1, and zero otherwise. It is 
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theoretically possible to update Ii(t) at each time step, according to the states of the 

presynaptic neurons at (t-1) and the weights of their synapses upon neuron I, however, 

this computation rule is totally unrealistic since it implies no transmission delays! 

Therefore, it is necessary to introduce a temporal grid taking into account such delays. 

Moreover, as we aim to compare the dynamics of the IFI network with the dynamics of 

the MC-P one, we have to define a temporal grid able to insure the following rule, i.e. 

every time the balance Bi(t) of all the inputs to a neuron is positive at time t, a short 

time later, at t', neuron i emits a spike and its state is ni(t')=1, while a negative balance  

corresponds to the silence of neuron i. This temporal grid is a periodic square pulse  

function f(t) given in Eq. 7, where P, the period and d the duration of the pulse are the 

two adjustable parameters. H is the previously defined Heaviside function. This 

function is the same for all neurons.   

 

( ) ( ) ∈
 i
f t = H d - r

k N
t = k P + r

  Eq 7 

The balance Bi(t) for neuron i at time t is given by Eq. 8, with a new parameter Q, 

which represents the width of the time window where the action potentials emitted by 

presynaptic neurons j are considered.  
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Finally, the value of Ii(t) is the function defined in Eq 9, based on the temporal grid f(t), 

which, when non nil, takes the value Isat if Bi(t) is positive and if f(t) equals 1.  

 

( ) ( )( ) ( )i ii sat iI t = I H B t f t  Eq 9 

The parameters P, d and Isat are inter-dependent: once Isat is set, the duration d and the 

period P of application of Isat have to be chosen from simulations performed on one IFI 

neuron model, in order to get a spike in response to every pulse of amplitude Isat and 

duration d. Then, the value of Q is chosen greater than the maximal delay of the 

spiking response to such pulses, in order to include in the "observation window" all the 

spikes ( Fig.3).  
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Fig 3. -Organization of the temporal grid for a network of IFI neurons 

A. Definition of  parameters Q , P, d and Isat used in the square pulse function f(t) of Eq7 

(dashed line) and Ii(t) of Eq9 (solid line). 

B. Setting P : its value is greater than  1) the interval ∆ttonic(Isat) between two spikes of a tonic response 

(a) and 2) greater than the necessary time for resetting the membrane potential after a spike induced by a 

pulse of amplitude Isat, and duration d. In b) the last condition is not satisfied, as some applications of Isat 

do not drive a spike (missing spikes indicated by X), in c) this condition is satisfied.  Setting Q : all 

spikes must be included in the "observation window".  

 

With this temporal grid defining the update rules, we introduced the network 

parameters defined for MC-P units in the network of IFI neurons, i.e. the same 

connection matrix, the same delay matrix and the same input vector. In Fig. 4, upper 

panels of A and B show activity maps obtained for all PN respectively in model MC-P 

and IFI models: the dynamics of both network types are identical. In addition, the sum 

of active neurons (Fig. 4A lower panel) exhibits the same time course as the sum of all 

potentials recorded in the IFI network (Fig. 4B lower panel), thus both of them could be 

considered as a valid representation of the LFP.  
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Fig 4.-Activity maps of MC-P and IFI networks  

A. Upper panel: Map of the spatio-temporal pattern produced by a recurrent network of MC-P units 

connected by a double matrix. It illustrates the activities (black squares) of the 100 excitatory units (PN). 

The lower panel shows the time course of the number of active neurons revealing oscillations, base of  

"the distributed synchrony".  

B. Upper panel: Raster plot produced by a recurrent network of IFI neurons connected with the same 

double matrix, the same delays and receiving the same input as in A. It illustrates the activities (black 

diamonds) of the 100 excitatory units (PN) which are identical to those of the spatio-temporal map in A. 

The lower panel illustrates the time course of the sum of membrane potentials. This time course is similar 

to that of the number of active neurons  (red line) shown in A.   

 

The plots of Fig. 5 show the activities of 4 selected PN amongst the one hundred in the 

IFI network. They exhibit very different patterns: neuron number 100 is very active 

while neuron 62 shows few spikes. Note that it is quite difficult to guess a temporal 

structure from the single recordings of neurons 100 or 85, for instance, while a 

temporal correlation is apparent when comparing the activities of neurons 71 and 62, 

where we see that some activities are time-locked. Thus the recording of single neurons 

is far from being representative of neuronal assemblies. 
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Fig 5.- Membrane potentials of  a sample of 4 IFI neurons selected in the raster plot shown in figure 4B.  

 

DISCUSSION 

 

Modeling recurrent networks of excitatory and inhibitory neurons with simple MC-P 

units, our simulations indicate that connectivity parameters may lead the to the co-

emergence of oscillations and distributed synchrony, both generating spatio-temporal 

patterns which are good candidates to represent the formatted codes in the AL of the 

olfactory system. In order to determine sets of network parameters leading to such a co-

emergence, we have used a descriptor of the degree of distributed synchrony, the NED. 

This index allowed to perform automatic quantification of the use of the temporal 

dimension in numerous spatio-temporal patterns generated by simulation. With the 

MC-P neurons, we avoid some computational limitations in modeling neuronal 

networks:  for instance, the huge parameter space linked to conductance-based neuron 

models requires lots of memory to realize and record the simulation data and much time 

is needed for processing dynamic updates. Furthermore MC-P networks present the 

advantage of being analytically tractable for processing information about synaptic 

matrix and input (4). Our results show that it is possible to capture some features of the 

insect olfactory system dynamics at the AL stage by using the simplest MC-P model. 

Concerning the coding possibilities, it is the combination of the spatial and temporal 

dimensions that leads to the richest repertoire of spatio-temporal pattern, with a 
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consequent potential high labeling and classification power with respect to the inputs.  

However, the “coding capacities”, i.e. the discrimination and/or grouping power, need 

further analyses, in terms of projections from the space of inputs to the space of 

“outputs”, which can be considered at the level of the excitatory neurons studied here, 

and representing PN in the AL, and, mainly, at the level of the neurons of the next step 

in the olfactory pathway, i.e., the Kenyon Cells at the level of the mushroom bodies, the 

last stage of the olfactory pathway (10).  

 

We first explored the dynamics of networks with a random sparse connectivity. Then 

we introduced some complexity by distributing very sparse stronger weights amongst 

both PN and LN, and this situation leads more often to dynamics with spatio-temporal 

patterns of interest (i.e. with a higher NED). It was recently suggested that connectivity 

in many networks could present some non-random features and viewed as "a skeleleton 

of strong connections in a sea of weaker ones" (12).  

 

Synchronization in the presence of random connectivity has been studied extensively in 

models using many versions of Integrate and Fire neurons (3, 13). In such studies, the 

observed dynamics results from a combination of both temporal characteristics of the 

neurons and the network connectivity, including sometimes synaptic temporal 

properties. Here, we show the fact that the connectivity alone, without considering any 

neuronal or synaptic dynamical property, is able to generate distributed synchrony in 

the neuronal dynamics. Then, introducing the same connectivity in our IFI network, we 

can get the same spatio-temporal patterns: the dynamics is clearly driven by the 

network connectivity. This result should be easily generalized for networks of more 

realistic conductance-based neurons, since we demonstrated that a small network of 

Hodgkin-Huxley neurons, with time dependant synapses, may exhibit the same spatio-

temporal codes as the ones provided by the equivalent network of MC-P neurons (4).  

 

In both models, each realization of simple or double matrix creates some  “modules” 

embedded in the connectivity structure. Some of them should play major roles in the 

complexity of the dynamics exhibited by random networks. For instance, the frequency 

of sub-structures or loops of local connections characterized by specific lengths, the 

distribution of unidirectional, and bidirectional connections may be interesting 
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candidates. This is a new approach to further study dynamics in information-processing 

networks.  

 

SUMMARY 

  
Both chaotic and periodic activities are observed in networks of the central nervous 

systems. We choose the locust olfactory system as a good case study to analyze the 

relationships between networks’ structure and the types of dynamics involved in coding 

mechanisms. In our modeling approach, we first build a fully connected recurrent 

network of synchronously updated McCulloch and Pitts neurons (MC-P type). In order 

to measure the use of the temporal dimension in the complex spatio-temporal patterns 

produced by the networks, we have defined an index the Normalized Euclidian 

Distance NED. We find that for appropriate parameters of input and connectivity, when 

adding some strong connections to the initial random synaptic matrices, it was easy to 

get the emergence of both robust oscillations and distributed synchrony in the spatio-

temporal patterns. Then, in order to validate the MC-P model as a tool for analysis for 

network properties, we examine the dynamic behavior of networks of continuous time 

model neuron (Izhikevitch Integrate and Fire model –IFI-), implementing the same 

network characteristics.  In both models, similarly to biological PN, the activity of 

excitatory neurons are phase-locked to different cycles of oscillations which remind the 

ones of the local field potential (LFP), and nevertheless exhibit dynamic behavior 

complex enough to be the basis of spatio-temporal codes. 
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