
The ARPEGEO Project 
A New Look at Cellular RSSI Fingerprints for Localization 

 
Iness Ahriz1, Bruce Denby2,1, Gérard Dreyfus1, Rémi Dubois1, Pierre Roussel1 

1SIGMA (Signal processing and Machine learning) Laboratory, ESPCI ParisTech 
2Université Pierre et Marie Curie 

Paris, France 
2denby@ieee;org; 1firstname.lastname@espci.fr

 
 

Abstract—A new technique developed at ESPCI ParisTech should 
allow cellular received signal strength fingerprints to play an 
important role in localization systems for regions which are not 
well covered by GPS. The article describes the ARPEGEO 
project, initiated to evaluate the impact of full-band GSM 
fingerprints analyzed with modern machine learning techniques. 
Results on indoor localization, as well as techniques to facilitate 
practical implementation of the method, are presented. 
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I.  INTRODUCTION 
Development of localization techniques for regions where 

GPS does not work well is currently a very active area of 
research. Substantial literature exists, for example, on methods 
making use of UWB nodes, WiFi RSSI  (Received Signal 
Strength Indicator) signals, accelerometers or other inertial 
devices, magnetometers, and the like [1-4]. Recently, dynamic 
multi-sensor approaches combining two or more localization 
technologies have also become rather common [5-7].  

Although radiotelephone base stations, like WiFi access 
points, provide fixed-power beacon signals that may also be 
exploited for localization, cellular-based approaches have 
predominantly been limited to outdoor applications due to their 
low accuracy – for example, commercial location based 
services (LBS) based on 7-carrier GSM network measurement 
report (NMR) RSSI fingerprints, with an accuracy of about 150 
meters [8]. Applications of cellular RSSI fingerprints to indoor 
localization have also appeared in the literature [9], and there is 
evidence that fingerprints with higher-carrier-counts are useful 
here [10]. Nevertheless the prevailing logic in the localization 
community has remained that additional carriers beyond the 
first few strongest ones will be irrelevant or redundant; difficult 
to analyze should they begin to number in the hundreds; and in 
any case impossible to obtain using the hardware available in 
everyday electronic devices. 

The ARPEGEO project (Analysis of Radioprints for 
Enhanced Geolocalization) at the SIGMA Laboratory of 
ESPCI ParisTech was initiated to study the localization 
capability of GSM fingerprints containing all carriers in the 
GSM band – more than 500 channels in most installations. 
Recent work performed at our laboratory has indicated that by 
using machine learning techniques to manage the high-
dimensionality of such full-band fingerprints, localization 

performance far superior to that obtained with more standard-
sized RSSI vectors – of the order of a few meters – is in fact 
possible [11]. It furthermore appears evident that the GSM 
frequency scans necessary to obtain the required fingerprints 
will be able to be performed on a standard cellular telephone 
with appropriate software. Thus, cellular RSSI fingerprints, 
contrary to traditional reasoning, may indeed be able to play an 
important role as part of a modern indoor localization system.    

In what follows, an overview of the technological solutions 
being developed in ARPEGEO is presented. Currently 
employed and possible future hardware RSSI acquisition 
platforms are described in the following section. Section III 
presents indoor localization results on two test datasets, which 
clearly show the importance of including large numbers of 
carriers in the fingerprint scans, while a detailed description of 
the classification and variable selection algorithms employed in 
our work appears in section IV. An oft-cited criticism to 
machine learning approaches is the “black-box” nature of such 
techniques, which make it difficult to ascertain “how” the 
system is performing its localization and to understand what 
the relevant system parameters actually are. The discussion in 
section V uses our variable selection procedure to shed light on 
precisely what information is being used for localization – with 
sometimes surprising results. Some shortcomings of our 
method, as well as a study of its temporal stability, are also 
presented in that section. Finally, as mentioned earlier, a 
consensus is emerging in the localization community that the 
“ultimate” indoor solution will likely be a hybrid of several 
different technologies. A discussion of how those developed in 
ARPEGEO might integrate into such a vision appears with our 
concluding remarks in section VI.   

II. HARDWARE PLATFORMS 
The starting point for a system using full-band cellular 

fingerprints (we limit our discussion to GSM here; similar 
techniques are possible in 3G networks), is a hardware 
platform capable of monitoring all frequencies in the band and 
recording the information to disk. The two most common 
approaches, both of which have been tested in ARPEGEO, are: 

- Trace Mobiles. Cellular engineers have for years used 
so-called “trace mobiles” to analyze and troubleshoot 
the radio network interface. To limit development 
costs, most manufacturers use the same hardware for 
trace mobiles and standard cellphones, simply 



disabling monitoring mode in the consumer units. 
Frequency scanning capability is one standard feature 
of such devices. The TEMS trace mobile system [12] is 
used in ARPEGEO.   

- M2M Modules. Beyond its utility for personal 
communications, the ubiquity and simplicity of the 
GSM system has made it an attractive alternative for 
industrial communications interfaces as well. These 
make use of so-called Machine-to-Machine, or M2M, 
modules, which are implemented using cellphone 
chipsets configured as Hayes-compatible modems. 
Some of these, such as the Telit GM862-GPS  [13] 
used in ARPEGEO, also have scanning capability.  

 The TEMS handset used for the data in this article (an 
older SH-888 model) required more than a minute to scan an 
entire GSM band, and the scan time of the GM862 module 
used is similar. Although this permits us to evaluate test 
scenarios, realistic dynamic localization is not feasible with 
these two hardware platforms. More recent chipset, however, 
allow significantly more processing to be performed on the 
telephone. The Sony-Ericsson W995, for example, is available 
as a TEMS Pocket [14] trace mobile with a form factor 
identical to the standard W995, and is able to scan 1600 
carriers per second (without Base Station Identity Code (BSIC) 
decoding) [15]. With such a scan rate, a full band GSM scan in 
a possible future device would require only about 300 
milliseconds to execute. These scans, furthermore, are carried 
out in idle mode, so that no actual connection to any cell tower 
is required for localization.  

III. DATASETS, RESULTS 
The most stringent test of any proposed localization 

technology is an evaluation of its performance as a stand-alone 
system in a static, memory-less scenario. Tests of this type 
performed in two indoor localization settings, as described 
below, demonstrate that full-band GSM fingerprints give 
performance far superior to that obtainable with more 
“standard” fingerprints, and are able to identify the room in 
which the hardware acquisition platform is located with more 
than 95% accuracy.  

A. Home and Lab Datasets 
Data were recorded over a one-month period in 5 rooms of 

a research laboratory (the Lab set) and 5 rooms of a private 
apartment (the Home set). The Lab set, recorded with the Telit 
GM862-GPS, contained 600 full-band GSM scans, and the 
Home set, which used a TEMS trace mobile, 241. For both 
datasets, the scans, labeled by room number from 1 to 5, 
contained approximately 500 carriers. Of these, only a fraction 
correspond to fixed-power beacon channels, the rest being 
traffic channels which, due to their variability, are normally not 
expected to be useful for localization. Theoretically, beacons 
can be identified by the presence of a BSIC; however, due to 
attenuation or multipath effects, these are sometimes not 
decoded. We chose to ignore BSICs in our study, for three 
reasons: 

1. The decoding may fail, as mentioned; 

2. Scanning is more rapid when BSICs are not requested; 

3. To remain open to the possibility that non-beacon 
channels could be useful for localization. 

At the same time, this choice will of course require our analysis 
algorithms to handle significant numbers of potentially noisy 
inputs, in addition to the beacon signals.  

Three types of fingerprints were defined: 1) “Standard”, 
containing about 40 carriers, which includes all carriers 
occurring at least once in the top 7 ranked by mean power over 
the training set (see section IV); 2) “All”, containing all carriers 
(about 500 channels); and 3) “Relevant”, containing about 30 
carriers which were selected for their “relevance” by an 
algorithm called Orthogonal Forward Regression, which we 
describe in section IV.  

B. Results 
The three fingerprints were compared on our two databases 

in a static (i.e., no memory of earlier positions or sensor 
inputs), indoor, room-level classification problem. The results 
presented here are based on a 5-class classifier using Linear 
Support Vector Machines (SVM). The operation of this 
classifier is detailed in section IV. For each database, 80% of 
the data were used for SVM training and validation (see section 
IV); the performances presented in Table I were then computed 
by applying the trained classifier to the remaining 20% of the 
data. Both the train and test fingerprints are uniformly 
distributed in time over the one-month period (see section V.B 
for a discussion of the temporal stability of the method).  

TABLE I.  LINEAR SVM RESULTS ON LAB AND HOME SETS 

Fingerprint Data 
set Standard (≈40 

carriers) 
All (≈500 
carriers) 

Relevant (≈30 
carriers) 

Home 68.9% 96.7% 93.4% 

Lab 59% 99% 95% 

 

 The table shows that the performance of the “Standard” 
fingerprints is unacceptably poor, whereas including all 
available carriers in the fingerprint leads to very good 
performance. Nevertheless, a solution requiring 500 input 
variables presents some problems of interpretation. When, 
however, a subset of carriers selected by their “relevance” for 
localization is employed, as in column 3 of the table, a much 
simpler solution is obtained, at the price of only slightly 
reduced efficiency. We shall return to this point in the 
discussion in section V. Below, we detail the variable selection 
procedure used, as well as the functioning of the SVM 
algorithm. 

IV. ALGORITHMS 

A. Support Vector Machine classifiers (SVM) 
Our method aims at indicating in which room among 5 the 

data are being recorded. To perform this task, 10 pairwise 
classifiers, i.e., classifiers that discriminate room i from room j, 
i, j = 1,…,5, i ≠ j) were designed.  



It was first ascertained, by running the Ho-Kashyap 
algorithm [16], that the examples available in the training-
validation set were linearly separable pairwise. This result 
allowed us to make use of linear Support Vector Machine 
(SVM) classifiers [17, 18]. A linear SVM provides, from 
examples, the optimal separating hyperplane in feature space, 
i.e., the separating hyperplane that classifies all examples 
without error, while lying as far as possible from the closest 
examples. Denoting by x the vector of features describing the 
items to be classified (in our case, the powers of all received 
carriers, or of a subset thereof), and by θ  the vector of 
parameters of the model, the equation of the hyperplane is of 
the form 

 x.θ  = 0 (1) 

Training is the process whereby the values of the 
parameters are estimated from the examples. It is cast in the 
form of a constrained optimization problem, where the function 
to be minimized is the norm of the vector of parameters, under 
the constraint that all examples be correctly classified (”hard-
margin” SVMs). 

The central problem in machine learning is the ability of the 
trained models to generalize, i.e. to correctly classify examples 
that are not present in the training set. The fact that the 
magnitude of the vector of parameters is kept as small as 
possible minimizes the risk of poor generalization. However, 
allowing some examples of the training set to be misclassified 
may further improve the generalization ability of the model. 
This leads to “soft-margin SVMs”, where the function to be 
minimized contains, in addition to the norm of vector θ , a term 
that is roughly proportional to the number of misclassified 
examples, with a proportionality coefficient (termed 
“regularization constant”), which must be determined by the 
model designer. 

In the present study, the value of the regularization constant 
was found by cross-validation: the training set of each pairwise 
classifier was divided into ten folds; one of them was used in 
turn as a validation set, on which the performance of the 
classifier trained on the other 9 folds was estimated. Thus, for 
each pair of rooms {i, j}, 10 classifiers with the same value of 
the regularization constant Cij were trained, and the cross-
validation score was computed as the average classification 
score on the validation sets. The procedure was iterated for 
different values of Cij in a prescribed range, and the value of Cij 
that yielded the best cross-validation score was retained.  

Finally, each pairwise classifier was trained on the data 
contained in all ten folds with the value of the regularization 
constant found by cross-validation, and the resulting classifier 
was tested on the test set, i.e. on fresh data that were not used 
during the cross-validation procedure.  

 

B. Overall system 
The final classification decision was made by a vote on the 

basis of the results of the 10 two-room classifiers designed as 
described in the previous section: the predicted class was the 
most frequently chosen room. An overview of the algorithm is 
presented in figure 1. It is the localization performance 
obtained with this procedure that is presented in Table I. 

 

 
Figure 1.  Overview of the system: the input “carriers” of the classifier can be 

all available carriers, “All”; or a subset thereof, “Standard” or “Relevant”. 

C. Selection of the relevant carriers  
This section focuses on the feature selection technique used 

to obtain the “Relevant” fingerprint subset. The procedure, 
called Orthogonal Forward Regression (OFR), is based on 
Gram-Schmidt orthogonalization [19] and relies on the 
correlation between the target and the features.   

For the classifier that discriminates room i from room j, the 
target is the label of the room (+1 for room i or −1 for room j) 
where the carrier power measurements were made. The first 
feature selected is that which exhibits the highest correlation 
with the target. The remaining inputs and the target are then 
orthogonalized with respect to this first selected feature and the 
process is iterated until some termination criterion is met, 
thereby resulting in a list of carriers ranked in order of 
decreased relevance. This feature ranking technique, based on 
linear correlations, is well suited to the design of a linear 
classifier such as the linear SVMs used here. 

The optimal number of carriers for each classifier was 
selected by cross-validation together with the value of the 
regularization constant, as explained above. The performances 
of the individual classifiers on the Lab dataset, after the 
variable selection procedure, are presented in Table II, which 
amounts to a classifier-by-classifier breakdown of the 95% 
overall score for the Lab set given in Table I (column 3). The 
cross-validation score and the test score are very similar, 
thereby showing that the classifiers were not over-fitted to the 
training/validation set, and generalize as expected. Most 
classifiers exhibit very good performance with a small number 
of input carriers, except for 3-vs-4 and 4-vs-5, which are 
somewhat worse. These results are discussed further in the next 
section. 



TABLE II.  TEST PERFORMANCES ON LAB SET FOR EACH CLASSIFIER 

 Room1 vs 
Room2 

Room1 vs 
Room3 

Room1 vs 
Room4 

Room1 vs 
Room5 

Room2 vs 
Room3 

Room2 vs 
Room4 

Room2 vs 
Room5 

Room3 vs 
Room4 

Room3 vs 
Room5 

Room4 vs 
Room5 

Number of input carriers 4 4 4 4 3 4 3 7 4 3 
Cross-validation score (%) 98.8 99.6 99.4 99.5 98.9 98.4 99.1 98.8 98.6 95 

Test score (%) 100 100 100 100 96.3 98.1 97.9 90 97.2 91.2 

 

V. DISCUSSION 
The proposed method has been shown to provide good 

results in our static, stand-alone tests carried over a period of 
one month. In this section, we examine this performance in 
more detail, concentrating on observed failure modes, the 
temporal stability of the solution, and an interpretation of the 
variable selection procedure from an engineering practice 
standpoint. These discussions are based on the Lab dataset, 
using OFR variable selection followed by a linear SVM.      

A. Room-by-room breakdown of results  
The confusion matrix in table III demonstrates that the 

deviation of the performance from 100% is dominated by the 
localizations errors that occur when the acquisition device in 
room 4 is predicted as having been in room 3 or room 5. This 
observation is also reflected in the poorer generalization scores, 
90% and 91.2% respectively, obtained for the 3-vs-4 and 4-vs-
5 classifiers in Table II. 

TABLE III.  CONFUSION MATRIX 

 Predictions 

 Room 1 Room 2 Room 3  Room 4 Room 5 

Room 1 100 0 0 0 0 

Room 2 0 97 0 0 3 

Room 3  0 0 95.2 4,8 0 

Room 4 0 0 5.3 84.2 10.5 

Room 5 0 0 0 0 100 

 
A local performance loss such as this is problematical. As 

all GSM carriers have already been included in our study, it 
seems reasonable to conclude that, in order to further improve 
performance, additional information will be required. This 
could take the form of additional RSSI measurements from 
other frequency bands, for instance, or of complementary data 
imported from other “imperfect” sensors, such as 
magnetometers, accelerometers, and the like. Adding memory 
to the system, to enable the use of dynamic trajectory 
approaches such as particle filters or Markov models [5, 20], 
will undoubtedly also be useful. 

B. Stability in time 
It is well known that RSSI measurements suffer from long 

term drift caused by seasonal and other environmental factors. 
Network modifications by the cellphone operator may also be a 
cause. Tests in ARPEGEO have indeed confirmed that a 
system trained on RSSIs at a particular date will be practically 

unusable for prediction six months later if no updates are made 
to the classifier. 

The results presented here have confirmed, however, that 
system coherence over a time scale of one month is indeed 
possible. Still, in a real implementation, the system will only 
have access to measurements that have been made in the past. 
It is interesting to ask the question, over what time scale can 
past measurements be used to make good predictions, without 
retraining the classifier?      

To test this, a new training set was created, from the Lab 
dataset, containing the measurements taken in the first three 
weeks of the one-month period, setting aside the last week as a 
test set. A classifier system was built as before, using cross-
validation and feature selection procedures. Good 
generalization capability was again observed for most 
classifiers, and a correct room localization performance of 94% 
was obtained, to be compared to 95% for the previous system 
(Table I) in which training and test fingerprints were uniformly 
distributed in time. 

C. Interpretation of selected carriers 
In section IV, it was demonstrated that good localization 

performance can be achieved using fewer than ten carriers per 
classifier. It is interesting to examine the properties of the 
carriers that have been selected as being relevant for 
localization.  

Assembling all of the carriers required by the 10 one-vs-
one classifiers results in a master set of only 29 “relevant” 
carriers, out of an original 500 scanned. Of these, 22 carriers 
were identified as beacons via the BSIC code. This means that 
about one quarter of the carriers found most relevant for 
localization (the remaining 7 carriers), never exhibited a valid 
BSIC code in an entire month of data acquisition. Thus, these 
carriers either are not beacons, or for some reason do not 
identify themselves as such. One interpretation is that they are 
traffic channels, which a priori were not expected to be useful 
for localization. In any case, a system basing itself on a pre-
selection by BSIC code will suffer the handicap of missing the 
information supplied by this type of channel.   

In order to compare the results of the OFR selection 
procedure to the more traditional choice of selecting the 
strongest carriers, we plot, in figure 2, the mean signal strength 
in dBm versus its standard deviation for all carriers scanned in 
room 1, where beacons are represented by crosses, and non-
beacons (no BSIC) by filled circles. The carriers that were 
selected as being relevant for discrimination for the Room1-vs-
Room2 classifier are at the centers of the four larger, open 
circles. The “relevant” carriers follow the same general 



distribution as “non-relevant” carriers, and are concentrated at 
lower standard deviations. Indeed, it may be due to their 
smaller variances that these variables are useful for 
discrimination. It is also clear from the figure that the relevant 
carriers certainly do not tend to be the strongest ones. 

 
Figure 2.  Signal strength and standard deviation of 500 available carriers 

scanned in room 1. 

VI. CONCLUSION 
Work performed in the ARPEGEO project has shown that 

full-band GSM RSSI fingerprints, when analyzed with a 
statistical learning methodology, provide vastly improved static 
localization performance as compared to standard fingerprints 
having much lower carrier counts. Such fingerprints, acquired 
in idle mode, are available today using trace mobiles or M2M 
modems at repetition rates of about a minute, and in the near 
future, should be obtainable on standard cellphone platforms at 
much higher rates. Variable selection techniques demonstrate 
that the most relevant carriers for localization purposes tend not 
to be the strongest carriers, and in some cases fail to be 
identified as beacons due to non-decoding of a BSIC. The 
ability to perform localization reliably with our method, using 
training data taken a few weeks previously, has been 
demonstrated. A confusion matrix analysis shows that, despite 
a global room classification performance above 95%, poorer 
performance (for example, 84.2%) can occur in certain 
locations, suggesting the need to include other sensors and/or 
trajectory modeling methods. In this context, full-band GSM 
fingerprints can be expected to take their place as one 
component of an “ultimate” indoor localization solution 
integrating several different technologies. 
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